Использование балансовых моделей при разработке управленческих решений.
Балансовый метод предполагает сопоставление взаимосвязанных показателей хозяйственной деятельности с целью выяснения и измерения их взаимного влияния, а также подсчета резервов повышения эффективности производства. При применении балансового метода анализа связь между отдельными показателями выражается в форме равенства итогов, полученных в результате различных сопоставлений. Балансы составляются по различной форме, например: 1) в табличной форме: по вертикали заносятся поступления (доходы), а по горизонтали — распределения (расходы); 2) в табличной форме: по вертикали сначала заносятся активы (за определенный период), ниже — пассивы или обязательства; или слева — актив, справа — пассив; 3) в табличной форме: по вертикали — источник (район, предприятия-поставщики), по горизонтали — район вывоза (предприятия или подразделения-потребители); 4) в графической форме: с плюсом — экономия, с минусом — потер Графические балансы могут применяться для предварительного анализа структуры распределения, а также для обеспечения наглядности окончательного баланса. Балансовые методы менеджмента — наиболее распространенные. При решении почти любой задачи, по любой функции управления, любого объема необходимо считать приход и расход, прибыль и затраты, поступление и распределение и т.д. Однако в настоящее время балансовым методам менеджмента (как и многим другим) не уделяется необходимого внимания.
39. Линейное программирование и области его применения Линейное программирование – это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. По типу решаемых задач методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Классические же методы дифференциального исчисления связаны с нахождением экстремумов функции во внутренней точке области допустимых значений. Отсюда — необходимость разработки новых методов. Линейное программирование представляет собой наиболее часто используемый метод оптимизации. К числу задач линейного программирования можно отнести задачи: · рационального использования сырья и материалов; · задачи оптимального раскроя; · оптимизации производственной программы предприятий; · оптимального размещения и концентрации производства; · составления оптимального плана перевозок, работы транспорта (транспортные задачи); · управления производственными запасами; · и многие другие, принадлежащие сфере оптимального планирования. Линейное программирование является одной из основных частей того раздела современной математики, который получил название математического программирования. В общей постановке, задачи этого раздела выглядят следующим образом
Один из разделов мат. программирования называется - линейным программированием. Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспективного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т. д. Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов), производственно-транспортных и других задач. Линейное программирование --раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Классические же методы дифференциального исчисления связаны с нахождением экстремумов функции во внутренней точке области допустимых значений. Отсюда -- необходимость разработки новых методов. Линейное программирование включает в себя ряд шагов: 1. Идентифицировать управляемые переменные и цель задачи. 2. Описать переменные в форме линейных соотношений, определяющих цель и ограничения на ресурсы, т.е. выполнить формулировку задачи. 3. Рассмотреть все допустимые сочетания переменных. Как правило, исследование задачи базируется на использовании пакетов прикладных программ. 4. Получить и оценить оптимальное решение. Оценка включает в себя анализ задачи на чувствительность. Наиболее распространенными направлениями использования линейного программирования в военном деле являются: - задача о перевозках (транспортная задача) - задача на распределение сил и средств (распределение сил и средств поражения по целям, распределение сил и средств разведки и др.)
Линейное программирование представляет собой математический аппарат, разработанный для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных. Такие задачи обычно встречаются при решении вопросов оптимального планирования производства с ограниченным количеством ресурсов, при определении оптимального плана перевозок (транспортные задачи) и т. д. Для решения большого круга задач линейного программирования имеется практически универсальный алгоритм - симплексный метод, позволяющий за конечное число итераций находить оптимальное решение подавляющего большинства задач. Тип используемых ограничений (равенства или неравенства) не сказывается на возможности применения указанного алгоритма. Дополнительной проверки на оптимальность для получаемых решений не требуется. Как правило, практические задачи линейного программирования отличаются весьма значительным числом независимых переменных. Поэтому для их решения обычно используют вычислительные машины, необходимая мощность которых определяется размерностью решаемой задачи.
40. Сущность и область применения динамического программирования при разработке альтернативных вариантов управленческого решения. Динамическое программирование служит эффективным методом решения задач оптимизации дискретных многостадийных процессов, для которых критерий оптимальности задается как аддитивная функция критериев оптимальности отдельных стадий. Без особых затруднений указанный метод можно распространить и на случай, когда критерий оптимальности задан в другой форме, однако при этом обычно увеличивается размерность отдельных стадий. По существу метод динамического программирования представляет собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса. При этом закон управления на каждой стадии находят путем решения частных задач оптимизации последовательно для всех стадий процесса с помощью методов исследования функций классического анализа или методов нелинейного программирования. Результаты решения обычно не могут быть выражены в аналитической форме, а получаются в виде таблиц. Ограничения на переменные задачи не оказывают влияния на общий алгоритм решения, а учитываются при решении частных задач оптимизации на каждой стадии процесса. При наличии ограничений типа равенств иногда даже удается снизить размерность этих частных задач за счет использования множителей Лагранжа. Применение метода динамического программирования для оптимизации процессов с распределенными параметрами или в задачах динамической оптимизации приводит к решению дифференциальных уравнений в частных производных. Вместо решения таких уравнений зачастую значительно проще представить непрерывный процесс как дискретный с достаточно большим числом стадий. Подобный прием оправдан особенно в тех случаях, когда имеются ограничения на переменные задачи и прямое решение дифференциальных уравнений осложняется необходимостью учета указанных ограничений. При решении задач методом динамического программирования, как правило, используют вычислительные машины, обладающие достаточным объемом памяти для хранения промежуточных результатов решения, которые обычно получаются в табличной форме.
Идея динамического программирования Нахождение кратчайшего пути в графе из одной вершины в другую, используя оптимальную подструктуру; прямая линия обозначает простое ребро; волнистая линия обозначает кратчайший путь между вершинами, которые она соединяет (промежуточные вершины пути не показаны); жирной линией обозначен итоговый кратчайший путь. Граф подзадач (ребро означает, что одна задача зависит от решения другой) для чисел Фибоначчи (граф — ациклический). Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи. К примеру, кратчайший путь в графе из одной вершины (обозначим s) в другую (обозначим t) может быть найден так: сначала считаем кратчайший путь из всех вершин, смежных с s, до t, а затем, учитывая веса ребер, которыми s соединена со смежными вершинами, выбираем лучший путь до t (через какую вершину лучше всего пойти). В общем случае мы можем решить задачу, в которой присутствует оптимальная подструктура, проделывая следующие три шага. 1. Разбиение задачи на подзадачи меньшего размера. 2. Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм. 3. Использование полученного решения подзадач для конструирования решения исходной задачи. Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). К примеру, если нам нужно найти n!, то тривиальной задачей будет 1! = 1 (или 0! = 1). Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). Ярким примером является вычисление последовательности Фибоначчи, F 3 = F 2 + F 1 и F 4 = F 3 + F 2 — даже в таком тривиальном случае вычисления всего двух чисел Фибоначчи мы уже посчитали F 2 дважды. Если продолжать дальше и посчитать F 5, то F 2посчитается ещё два раза, так как для вычисления F 5 будут нужны опять F 3 и F 4. Получается следующее: простой рекурсивный подход будет расходовать время на вычисление решение для задач, которые он уже решал. Чтобы избежать такого хода событий мы будем сохранять решения подзадач, которые мы уже решали, и когда нам снова потребуется решение подзадачи, мы вместо того, чтобы вычислять его заново, просто достанем его из памяти. Этот подход называется кэширование. Можно проделывать и дальнейшие оптимизации — например, если мы точно уверены, что решение подзадачи нам больше не потребуется, можно выкинуть его из памяти, освободив её для других нужд, или если процессор простаивает и мы знаем, что решение некоторых, ещё не посчитанных подзадач, нам понадобится в дальнейшем, мы можем решить их заранее. Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи: § перекрывающиеся подзадачи; § оптимальная подструктура; § возможность запоминания решения часто встречающихся подзадач. Динамическое программирование обычно придерживается двух подходов к решению задач: § нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач. § восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем. Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme, Common Lisp, Perl), а в некоторых требует дополнительных расширений (C++). Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций, и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах. Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных — просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах. Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность. Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.
Динамическое программирование — это вычислительный метод для решения задач определенной структуры. Возникло и сформировалось в 1950-1953 гг. благодаря работам Р. Беллмана над динамическими задачами управления запасами. В упрощенной формулировке динамическое программирование представляет собой направленный последовательный перебор вариантов, который обязательно приводит к глобальному максимуму. Основные необходимые свойства задач, к которым возможно применить этот принцип: Задача должна допускать интерпретацию как n-шаговый процесс принятия решений. Задача должна быть определена для любого числа шагов и иметь структуру, не зависящую от их числа. При рассмотрении k-шаговой задачи должно быть задано некоторое множество параметров, описывающих состояние системы, от которых зависят оптимальные значения переменных. Причем это множество не должно изменяться при увеличении числа шагов. Выбор решения (управления) на k-м шаге не должен оказывать влияния на предыдущие решения, кроме необходимого пересчета переменных. Задача о выборе траектории, задача последовательного принятия решения, задача об использовании рабочей силы, задача управления запасами — классические задачи динамического программирования. Постановка задачи динамического программирования. Постановку задачи динамического программирования рассмотрим на примере инвестирования, связанного с распределением средств между предприятиями. В результате управления инвестициями система последовательно переводится из начального состояния S0 В конечное Sn. Предположим, что управление можно разбить на n шагов и решение принимается последовательно на каждом шаге, а управление представляет собой совокупность n пошаговых управлений. На каждом шаге необходимо определить два типа переменных - переменную состояния системы Sk переменную управления xk. Переменная Sk определяет, в каких состояниях может оказаться система на рассматриваемом k-м шаге. В зависимости от состояния S на этом шаге можно применить некоторые управления, которые характеризуются переменной xk которые удовлетворяют определенным ограничениям и называются допустимыми. Допустим. = (x1, x2,..., xk,..., xn) - управление, переводящее систему на состояния S0 в состояние Sn, a Sk - есть состояние системы на k-м шаге управления. Тогда последовательность состояний системы можно представить в виде графа, представленного на рис. 2.11. рис. 2.11 Применение управляющего воздействия xk на каждом шаге переводит систему в новое состояние S1 (S, xk) и приносит некоторый результат Wk (S, xk). Для каждого возможного состояния на каждом шаге среди всех возможных управлений выбирается оптимальное управление x*k, такое, чтобы результат, который достигается за шаги с k-го по последний n-й, оказался бы оптимальным. Числовая характеристика этого результата называется функцией Беллмана Fk (S) и зависит от номера шага k и состояния системы S. Задача динамического программирования формулируется следующим образом: требуется определить такое управление, переводящее систему из начального состояния S0 в конечное состояние Sn, при котором целевая функция принимает наибольшее (наименьшее) значение F(S0,) => extr. Рассмотрим более подробно особенности математической модели динамического программирования: задача оптимизации формулируется как конечный многошаговый процесс управления; целевая функция (выигрыш) является аддитивной и равна сумме целевых функций каждого шага: выбор управления xk на каждом шаге зависит только от состояния системы k этому шагу Sk-1, и не влияет на предшествующие шаги (нет обратной связи); состояние системы Sk после каждого шага управления зависит только от предшествующего состояния системы Sk-1 и этого управляющего воздействия xh (отсутствие последействия) и может быть записано в виде уравнения состояния: Sk = fk(Sk-1, xk), k = 1, n; на каждом шаге управление xk зависит от конечного числа управляющих переменных, а состояние системы зависит Sk – от конечного числа параметров; оптимальное управление представляет собой вектор, определяемый последовательностью оптимальных пошаговых управлений: = (x*1, x*2,..., x*k,..., x*n), число которых и определяет количество шагов задачи. Принцип оптимальности и математическое описание динамического процесса управления. В основе метода ДП лежит принцип оптимальности, впервые сформулированный в 1953 г. американским математиком Р.Э.Беллманом: каково бы ни было состояние системы в результате какого-либо числа шагов, на ближайшем шаге нужно выбирать управление так, чтобы оно в совокупности с оптимальным управлением на всех последующих шагах приводило к оптимальному выигрышу на всех оставшихся шагах, включая выигрыш на данном шаге. При решении задачи на каждом шаге выбирается управление, которое должно привести к оптимальному выигрышу. Если считать все шаги независимыми, тогда оптимальным управлением будет то управление, которое обеспечит максимальный выигрыш именно на данном шаге. Однако, например, при покупке новой техники взамен устаревшей на ее приобретение затрачиваются определенные средства, поэтому доход от ее эксплуатации в начале может быть небольшой, а в следующие годы новая техника будет приносить больший доход. И наоборот, если принято решение оставить старую технику для получения дохода в текущем году, то в дальнейшем это приведет к значительным убыткам. Этот пример демонстрирует следующий факт: в многошаговых процессах управление на каждом конкретном шаге надо выбирать с учетом его будущих воздействий на весь процесс. Кроме того, при выборе управления на данном шаге следует учитывать возможные варианты состояния предыдущего шага. Например, при определении количества средств, вкладываемых в предприятие в i-м году, необходимо знать, сколько средств осталось в наличия к атому году и какой доход получен в предыдущем (i - 1)-м году. Таким образом, при выборе шагового управления необходимо учитывать следующие требования: возможные исходы предыдущего шага Sk-1; влияние управления xk на все оставшиеся до конца процесса шаги (n-k). В задачах динамического программирования первое требование учитывают, делая на каждом шаге условные предположения о возможных вариантах окончания предыдущего шага и проводя для каждого из вариантов условную оптимизацию. Выполнение второго требования обеспечивается тем, что в этих задачах условная оптимизация проводится от конца процесса к началу.
|