Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многозначная логика. Классическая логика основывается на принципе, согласно которому каждое высказывание является либо истинным





Классическая логика основывается на принципе, согласно которому каждое высказывание является либо истинным, либо ложным. Это так называемый принцип двузначности. Саму логику, допускающую только истину и ложь и не предполагающую ничего промежуточного между ними, обычно именуют двузначной. Ей противопоставляют многозначные системы. В последних наряду с истинными и ложными утверждениями допускаются также разного рода «неопределенные» утверждения, учет которых сразу же не только усложняет, но и меняет всю картину.

Принцип двузначности был известен еще Аристотелю, который не считал его, однако, универсальным и не распространял его действие на высказывания о будущем.

Два враждебных флота расположились друг против друга и выжидают утра и вместе с ним подходящего ветра. Будет ли завтра морская битва? Очевидно, что она или состоится, или же не состоится. Но по мысли Аристотеля, ни одно из этих двух предсказаний не является сегодня ни истинным, ни ложным. Нет еще твердой причины ни для того, чтобы битва произошла, ни для того, чтобы ее не случилось. Оба варианта возможны в равной мере, и все будет зависеть от дальнейшего хода событий. Могут измениться планы флотоводцев, может случиться буря и разметать флоты по морю. Пока же нельзя утверждать с определенностью ни то, что битва будет, ни то, что ей не бывать. Оба эти утверждения возможны, но ни одно из них не является сейчас ни истинным, ни ложным.

Аналогично обстоит дело с вопросом, будет ли данный плащ разрезан или нет. Все зависит от решения его хозяина, а оно может измениться в любой момент.

Аристотелю казалось, что высказывания о будущих случайных событиях, наступление которых зависит от воли человека, не являются ни истинными, ни ложными. Они не подчиняются принципу двузначности. Прошлое и настоящее однозначно определены и не подвержены изменению. Будущее же в определенной мере свободно для изменения и выбора.

Подход Аристотеля уже в древности вызвал ожесточенные споры. Высоко оценивал его Эпикур, допускавший существование случайных событий. Известный же древнегреческий логик Хрисипп, категорически отрицавший случайное, с Аристотелем не соглашался. Он считал принцип двузначности одним из основных положений не только всей логики, но и философии.

В более позднее время положение, что всякое высказывание либо истинно, либо ложно, оспаривалось многими и по многим причинам. Указывалось, в частности, на то, что оно затрудняет анализ высказываний о будущем, высказываний о неустойчивых, переходных состояниях, о несуществующих объектах, подобных «нынешнему королю Франции», об объектах, недоступных наблюдению, наподобие «абсолютно черного тела», и т.д.

Но только в современной логике оказалось возможным реализовать сомнения в универсальности принципа двузначности в форме логических систем. Этому способствовало широкое использование ею методов, не препятствующих формальному подходу к логическим проблемам.

Первые многозначные логики построили независимо друг от друга польский логик Я. Лукасевич в 1920 г. и американский логик Э. Пост в 1921 г. С тех пор построены и исследованы десятки и сотни таких «логик».

Я. Лукасевичем была предложена трехзначная логика, основанная на предположении, что высказывания бывают истинными, ложными и возможными, или неопределенными. К последним были отнесены высказывания наподобие: «Я буду в Москве в декабре будущего года». Событие, описываемое этим высказыванием, сейчас никак не предопределено ни позитивно, ни негативно. Значит, высказывание не является ни истинным, ни ложным, оно только возможно.

Все законы трехзначной логики Лукасевича оказались также законами и классической логики; обратное, однако, не имело места. Ряд классических законов отсутствовал в трехзначной логике. Среди них были закон противоречия, закон исключенного третьего, законы косвенного доказательства и др. То, что закона противоречия не оказалось в трехзначной логике, не означало, конечно, что она была в каком-то смысле противоречива или некорректно построена.

Э. Пост подходил к построению многозначных логик чисто формально. Пусть 1 означает истину, а 0 — ложь. Естественно допустить тогда, что числа между единицей и нулем обозначают какие-то уменьшающиеся к нулю степени истины. '

Такой подход вполне правомерен на первом этапе. Но чтобы построение логической системы перестало быть чисто техническим упражнением, а сама система — сугубо формальной конструкцией, в дальнейшем необходимо, конечно, придать ее символам определенный логический смысл, содержательно ясную интерпретацию. Вопрос о такой интерпретации — это как раз самая сложная и спорная проблема многозначной логики. Как только между истиной и ложью допускается что-то промежуточное, встает вопрос: что, собственно, означают высказывания, не относящиеся ни к истинным, ни к ложным? Кроме того, введение промежуточных степеней истины изменяет обычный смысл самих понятий истины и лжи. Приходится поэтому не только придавать смысл промежуточным степеням, но и переистолковывать сами понятия истины и лжи.

Было много попыток содержательно обосновать многозначные логические системы. Однако до сих пор остается спорным, являются ли такие системы просто «интеллектуальным упражнением» или они все же говорят что-то о принципах нашего мышления.

Многозначная логика никоим образом не отрицает и не дискредитирует двузначную. Напротив, первая позволяет более ясно понять идеи, лежащие в основе второй, и является в определенном смысле ее обобщением.

Троичная логика (трёхзначная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики. Перечень истинностных значений трёхзначной логики помимо «истинно» и «ложно» включает также третье значение, которое трактуется как «не определено» или «неизвестно».

Логическим значениям условно могут быть приписаны цифровые, яркостные, цветные, звуковые и др. значения.

Если не использовать значение «неизвестно», троичная логика сводится к обычной двоичной логике.

К троичной логике Лукасевича хорошо подходят троичные однопроводные трёхуровневые логические элементы.

 

Троичная логика, в отличие от двоичной — не булево кольцо и обладает собственным математическим аппаратом. Он состоит из системы аксиом, которые определяют над множеством {«1», «0», «1»} одноместные и двуместные операции, а также выводимые из них свойства.

Для конъюнкции и дизъюнкции в тройной логике сохраняются коммутативный (переместительный), ассоциативный (сочетательный) и дистрибутивный (распределительный) законы.

Несколько свойств образуются благодаря особенности отрицания Лукасевича:

§

§

Однако из-за наличия третьего состояния некоторые законы двоичной логики оказываются неверными, для них сформулированы троичные аналоги. Так, вместо закона противоречия стали применять закон несовместности состояний, вместо закона исключённого третьего — закон полноты состояний (закон исключённого четвёртого), вместо неверного закона Блейка — Порецкого применяют трёхчленный закон Блейка — Порецкого.

 







Дата добавления: 2015-08-27; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия