Модальная логика. Для классической логики вещь существует или не существует, и нет никаких других вариантов
Для классической логики вещь существует или не существует, и нет никаких других вариантов. Но как в обычной жизни, так и в науке постоянно приходится говорить не только о том, что есть в действительности и чего нет, но и о том, что должно быть или не должно быть и т.д. Действительный ход событий можно рассматривать как реализацию одной из многих мыслимых возможностей, а действительный мир, в котором мы находимся, — как один из бесчисленного множества возможных миров. В возможного безбрежном океане Действительное — маленький Гольфстрим. Язык классической логики слишком беден, чтобы на нем удалось передать рассуждения не только о реальных событиях (имеющих место в действительном мире), но и о возможных событиях (происходящих в каких-то возможных мирах) или о необходимых событиях (наступающих во всех таких мирах). Стремление обогатить язык логики и расширить ее выразительные возможности привело к возникновению модальной логики. Ее задача — анализ рассуждений, в которых встречаются модальные понятия, служащие для конкретизации устанавливаемых нами связей, их оценки с той или иной точки зрения. Еще Аристотель начал изучение таких, наиболее часто встречающихся модальных понятий, как «необходимо», «возможно», «случайно». В средние века круг модальностей был существенно расширен, и в него вошли также «знает», «полагает», «было», «будет», «обязательно», «разрешено» и т.д. В принципе число групп модальных понятий и выражаемых ими точек зрения не ограничено. Современная логика выделяет наиболее важные из этих групп и делает их предметом специального исследования. Она изучает также общие принципы модальной оценки, справедливые для всех групп модальных понятий. Интересную группу составляют, в частности, понятия «полагает», «сомневается» и т.п. Раздел модальной логики, исследующей эти и подобные им понятия, получил название эпистемической логики. В числе самых простых законов этой логики такие положения: «Невозможно полагать что-то и вместе с тем сомневаться в этом», «Если субъект убежден в чем-то, неверно, что он убежден также в противоположном» и т.п. Временные модальные понятия «было», «будет», «раньше», «позже», «одновременно» и т.п. изучаются логикой времени. Среди элементарных ее законов содержатся утверждения: «Неверно, что произойдет логически невозможное событие», «Если было, что всегда будет нечто, то оно всегда будет», «Ни одно событие не происходит раньше самого себя» и т.п. В последние десятилетия модальная логика бурно развивается, вовлекая в свою орбиту все новые группы модальных понятий. Существенно усовершенствованы способы ее обоснования. Это придало модальной логике новое дыхание и поставило ее в центр современных логических исследований. Все модальные понятия можно разделить на абсолютные и сравнительные. Первые представляют собой характеристики, приложимые к отдельным объектам, вторые относятся к парам объектов, первые являются свойствами объектов, вторые — отношениями между объектами. Абсолютными модальными понятиями являются, например, понятия «хорошо» и «плохо», В логике времени к абсолютным модальностям относятся понятия «было» («всегда было»), «есть» и «будет» («всегда будет»). Сравнительными модальными понятиями являются «раньше», «позже» и «одновременно». В логике оценок наряду с абсолютными оценочными понятиями «хорошо», «(оценочно) безразлично» и «плохо» исследуются также сравнительные оценочные понятия «лучше», «равноценно» и «хуже». В логике причинности изучаются отношения «...есть причина...» и «...есть следствие...», которые можно рассматривать как сравнительные каузальные модальности. Им соответствует абсолютная каузальная модальность «детерминировано (предопределено)». Выражение «Событие А является причиной события В» устанавливает определенное отношение между двумя событиями; выражение «Детерминировано наступление события А» приписывает этому событию свойство предопределенности. В логике истины к абсолютным модальностям относятся понятия «истинно», «неопределенно» и «ложно». Этим понятиям можно поставить в соответствие сравнительное модальное понятие вероятности: «...более вероятно, чем...». Выражение «Истинно высказывание А» устанавливает определенное свойство высказывания, а именно, его соответствие действительности; выражение «Высказывание А более вероятно, чем высказывание В» указывает отношение двух высказываний с точки зрения их вероятности. В теории логических модальностей абсолютными понятиями являются «логически необходимо», «логически возможно», «логически невозможно». Им можно поставить в соответствие в качестве сравнительного модального понятия понятие «...логически следует...». Высказывание «Логически необходимо высказывание А» приписывает высказыванию А определенное свойство, а именно свойство быть логически необходимым. Выражение «Из высказывания А логически следует высказывание В» устанавливает определенное отношение между высказываниями А и В. В современной логике отношение логического следования пока не рассматривалось, однако, как сравнительная модальность. Влогике изменения наряду с абсолютным понятием «возникает» исследуется также сравнительное понятие «...переходит в...» («Возникает объект А» и «Состояние А переходит в состояние В»). Абсолютные модальные понятия иногда называются А-понятиями, сравнительные — В-понятиями. А- и В-понятия не сводимы друг к другу, они представляют собой как бы два разных видения мира, два взаимодополнительных способа описания одних и тех же вещей и событий. «Хорошо» не определимо через «лучше», «было» не определимо через «раньше» и т.д. Логики абсолютных модальных понятий не сводимы к логическим теориям сравнительных понятий, и наоборот. В модальной логике основное внимание уделяется абсолютным модальностям. Из сравнительных модальных понятий относительно подробно исследованы пока только аксиологические модальности «лучше», «равноценно», «хуже». Модальные понятия разных типов имеют общие формальные свойства. Так, неза-висимо от того, к какой группе относятся эти понятия, они определяются друг через друга по одной и той же схеме. Нечто возможно, если противоположное не является необходимым; разрешено, если противоположное не обязательно; допускается, если нет убеждения в противоположном. Случайно то, что не является ни необходимым, ни невозможным. Безразлично то, что не обязательно и не запрещено. Неразрешимо то, что недоказуемо и неопровержимо и т.п. Подобным же образом сравнительные модальные понятия разных групп определяются по одной и той же схеме: «первое лучше второго» равносильно «второе хуже первого», «первое раньше второго» равносильно «второе позже первого», «первое причина второго» рав-носильно «второе следствие первого» и т.д. В каждом разделе модальной логики доказуема своя версия принципа модальной полноты, являющегося модальным аналогом закона исключенного третьего. В теории логических модальностей принцип полноты утверждает, что каждое высказывание является или необходимым, или случайным, или невозможным; в нормативной логике — что всякое действие или обязательно, или нормативно безразлично, или запрещено; в логике оценок — что всякий объект является или хорошим, или оценочно безразличным, или плохим и т.д. В каждом разделе модальной логики есть и своя версия принципа модальной непротиворечивости, являющегося модальным аналогом закона противоречия: высказывание не может быть необходимым и невозможным; действие не может быть как обязательным, так и запрещенным; объект не может быть и хорошим, и плохим, и т.д. Модальные понятия, относящиеся к разным группам, имеют разное содержание. При сопоставлении таких понятий (например, «необходимо», «доказуемо», «убежден», «обязательно», «хорошо», «всегда») складывается впечатление, что они не имеют ничего общего. Однако модальная логика показывает, что это не так. Модальные понятия разных групп выполняют одну и ту же функцию: они уточняют устанавливаемую в высказывании связь, конкретизируют ее. Правила их употребления определяются только этой функцией и не зависят от содержания высказываний. Поэтому данные правила являются едиными для всех групп понятий и имеют чисто формальный характер. Логике достаточно исследовать наиболее интересные и важные из таких групп и распространить затем полученные результаты на все иные возможные группы модальных понятий. В дальнейшем есть смысл остановиться вкратце на том, что говорит логика о ценностной и нормативной точках зрения и таких выражающих их понятиях, как «хорошо» и «должен». Модальные теории оценок и норм интересны как сами по себе, так и своим воздействием на методологию гуманитарного знания. Модальности · Алетические (от древнегр. alethinos — истинный) модальные понятия:
· Деонтические(древнегр. deon, deontos — должное, необходимое) модальные понятия:
Логику деонтических модальностей разработал финский философ Георг фон Вригт. · Аксиологические (древнегр. axios — ценность) модальные понятия:
Аксиологическую логику разработал русский философ А.А. Ивин. · Эпистемические(древнегр. episteme — знание) модальные понятия:
Эпистемическую логику разработал Яакко Хинтикка. Временные.
· Пространственные
Вероятностная логика — логика, в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике, но непрерывная шкала значений истинности от 0 до 1, так что, нуль соответствует невозможному событию, единица — практически достоверному[1][2]. Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения[3]. Проблематика вероятностной логики начала развиваться в древности, например, Аристотелем и в новое время — Г. В. Лейбницем, Дж. Булем, У. С. Джевонсом, Дж. Венном, в дальнейшемГ. Рейхенбахом, Р. Карнапом, Ч. С. Пирсом, Дж. М. Кейнсом и другими, в России — П. С. Порецким, С. Н. Бернштейном и другими[1][4][5]. В настоящее время вероятностная логика находит наибольшее применение в качестве современной формы индуктивной логики[6][5]. Новым стимулом к возникновению систем вероятностной логики послужил прогресс в развитии приложений к искусственному интеллекту[7]. Комбинаторная логика — раздел дискретной математики, который тесно связан с λ-исчислением, т. к. описывает вычислительные процессы. С момента своего возникновения комбинаторная логика и лямбда-исчисление были отнесены к неклассическим логикам. Дело заключается в том, что комбинаторная логика возникла в 1920-х годах, а лямбда-исчисление — в 1940-х годах как ветвь метаматематики с достаточно очерченным предназначением — дать основания математике. Это означает, что сконструировав требуемую «прикладную» математическую теорию — предметную теорию, — которая отражает процессы или явления в реальной внешней среде, можно воспользоваться «чистой» метатеорией как оболочкой для выяснения возможностей и свойств предметной теории. Комбинаторная логика и лямбда-исчисление — это такие формальные системы, в которых центральной разрабатываемой сущностью является представление об объекте. В первой из них — комбинаторной логике, — механизм связывания переменных в явном виде отсутствует, а во второй он имеется. Наличие явного механизма связывания предполагает и наличие связанных переменных, но тогда есть и свободные переменные, а также механизмы замещения формальных параметров — связанных переменных, — на фактические параметры, то есть подстановка. Изначальным назначением комбинаторной логики был именно анализ процесса подстановки. В качестве ее сущностей планировалось использовать объекты в виде комбинаций констант. Лямбда-исчислению отводилась роль средства уточнения представлений об алгоритме и вычислимости. Как следствие, комбинаторная логика дает в руки инструмент для анализа процесса подстановки. Через короткий промежуток времени оказалось, что обе эти системы можно рассматривать как языки программирования (см. также комбинаторное программирование). В обеих системах исчисляются объекты, они являются исчислениями или языками высших порядков, то есть имеются средства описания отображений или операторов, которые определяются на отображениях или операторах, а в качестве результата вырабатывают также отображения или операторы. Самое существенное, что именно отображение считается объектом. В этом их принципиальное отличие от всего многообразия других систем, в которых первичной сущностью обычно считают представление о множестве и его элементах. К настоящему времени оба эти языка не только стали основой для всей массы исследований в области компьютерных наук и компьютинга, но и широко используются в теории программирования. Развитие вычислительной мощности компьютеров привело к автоматизации значительной части теоретического — логического и математического, — знания, а комбинаторная логика вместе с лямбда-исчислением признаются основой для рассуждений в терминах объектов.
|