Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Этапы приближенного решения нелинейных уравнений.





 

Приближенное решение уравнения состоит из двух этапов:

  1. Отделение корней, то есть нахождение интервалов из области определения функции f (x), в каждом из которых содержится только один корень уравнения (1).
  2. Уточнение корней до заданной точности.

 

Отделение корней можно проводить графически и аналитически.

Для того чтобы графически отделить корни уравнения (1), необходимо построить график функции . Абсциссы точек его пересечения с осью Ox являются действительными корнями уравнения (рис. 1).


 
Рис. 1. Графическое отделение корней (1-ый способ).

На практике же бывает удобнее заменить уравнение (1) равносильным ему уравнением

, (2)

где и - более простые функции, чем . Абсциссы точек пересечения графиков функций и дают корни уравнения (2), а значит и исходного уравнения (1) (рис.2).

 
 

Рис 2. Графическое отделение корней (2-ой способ).

 

Пример 1. Отделить графически корень уравнения .

Решение. Для решения задачи построим график функции (рис. 3).

Рис. 3. График функции .

 

Из рисунка видно, что один из корней уравнения принадлежит отрезку , второй – отрезку . Так как рассматриваемое уравнение имеет третью степень, то должен существовать еще один корень на интервале .

Пример 2. Отделить графически корень уравнения .

 
 

Решение. Преобразуем уравнение к виду и построим графики функций и (рис. 4).

Рис. 4. Графическое отделение корней.

 

Из рисунка видно, что абсцисса точки пересечения этих графиков принадлежит отрезку .

 

Аналитическое отделение корней основано на следующих теоремах.

Теорема 1. Если непрерывная функция принимает на концах отрезка значения разных знаков, т.е. , то на этом отрезке содержится по крайней мере один корень уравнения (1) (рис. 5).

 
 

Рис. 5. Существование корня на отрезке.

 

Теорема 2. Если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, а производная сохраняет знак внутри отрезка , то внутри отрезка существует единственный корень уравнения f (x) = 0 (рис. 6).

Рис. 6. Существование единственного корня на отрезке.

 

Пример 3. Подтвердить аналитически правильность нахождения отрезка изоляции корня уравнения .

Решение. Для отрезка имеем: ; Значит, . Следовательно, корень отделён правильно.

 

Уточнение корней до заданной точности заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Наиболее распространенными являются метод деления отрезка пополам, метод касательных (Ньютона), метод секущих (хорд).

 







Дата добавления: 2015-08-17; просмотров: 785. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия