Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм приближенного вычисления корня методом хорд.





Исходные данные:

f (x) – функция;

ε; – требуемая точность;

x0 – начальное приближение.

Результат: xпр – приближенный корень уравнения f (x) = 0.

Метод решения:

 
 

Рассмотрим случай, когда и имеют одинаковые знаки (рис. 11).

 

Рис. 11. Геометрическая интерпретация метода хорд для случая .

 

График функции проходит через точки и . Искомый корень уравнения (точка x*) нам неизвестен, вместо него возьмет точку х1 пересечения хорды А0В0 с осью абсцисс. Это и будет приближенное значение корня.

В аналитической геометрии выводится формула, задающая уравнение прямой, проходящей через две точки с координатами 1; у1) и 2; у2): .

Тогда уравнение хорды А0В0 запишется в виде: .

Найдем значение х = х1, для которого у = 0: . Теперь корень находится на отрезке . Применим метод хорд к этому отрезку. Проведем хорду, соединяющую точки и , и найдем х2 - точку пересечения хорды А1В0 с осью Ох: .

Продолжая этот процесс, находим: . Получаем рекуррентную формулу вычисления приближений к корню .

В этом случае конец b отрезка остается неподвижным, а конец a перемещается.

Таким образом, получаем расчетные формулы метода хорд:

; . (4)

Вычисления очередных приближений к точному корню уравнения продолжается до тех пор, пока не достигнем заданной точности, т.е. должно выполняться условие: , где - заданная точность.

Теперь рассмотрим случай, когда первая и вторая производные имеют разные знаки, т.е. (рис. 12).

 


Рис. 12. Геометрическая интерпретация метода хорд для случая .

 

Соединим точки и хордой А0В0. Точку пересечения хорды с осью Ох будем считать первым приближение корня. В этом случае неподвижным концом отрезка будет являться конец а.

Уравнение хорды А0В0: . Отсюда найдем , полагая y = 0: . Теперь корень уравнения . Применяя метод хорд к этому отрезку, получим . Продолжая и т.д., получим .

Расчетные формулы метода:

, . (5)

Условие окончания вычислений: . Тогда хпр = xn+1 с точностью .

Итак, если приближенное значение корня находят по формуле (4), если , то по формуле (5).

Практический выбор той или иной формулы осуществляется, пользуясь следующим правилом: неподвижным концом отрезка является тот, для которого знак функции совпадает со знаком второй производной.

Пример 4. Проиллюстрировать действие этого правила на уравнении , если отрезок изоляции корня [2;3].

Решение. Здесь .

; . Вторая производная в этом примере положительна на отрезке изоляции корня [2;3]: , , т.е. . Таким образом, при решении данного уравнения методом хорд для уточнения корня выбираем формулы (4).

 







Дата добавления: 2015-08-17; просмотров: 2604. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия