Числовые характеристики случайной величины
Закон распределения случайной величины является исчерпывающей характеристикой, которая полностью описывает случайную величину с вероятностной точки зрения. Однако во многих практических задачах нет надобности в таком полном описании и достаточно указать только отдельные числовые параметры, характеризующие существенные черты распределения. Такие числа называются числовыми характеристиками случайной величины. Математическое ожидание характеризует среднее значение случайной величины и определяется по формулам: Для дискретных величин: Для непрерывных величин: MX – оператор математического ожидания. В качестве математического ожидания используется «среднее взвешенное значение», причем каждое из значений случайной величины учитывается с «весом», пропорциональным вероятности этого значения. Физический смысл математического ожидания – среднее значение случайной величины, т.е. то значение, которое может быть использовано вместо случайной величины в приблизительных расчетах или оценках. Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания и определяется по формулам: Для дискретных величин: Для непрерывных величин: Дисперсия случайной величины имеет размерность квадрата случайной величины, поэтому для анализа диапазона значений величины Х дисперсия не совсем удобна. Этого недостатка лишено среднеквадратическое отклонение (СКО), размерность которого совпадает с размерностью случайной величины. Среднеквадратическое отклонение случайной величины X характеризует ширину диапазона значений X и равно: СКО измеряется в тех же физических единицах, что и случайная величина. Правило 3σ;. Практически все значения нормальной случайной величины находятся в интервале [ mx – 3σx; mx + 3σx; ]. Математическое ожидание и дисперсия (или СКО) – наиболее часто применяемые характеристики случайной величины. Они характеризуют наиболее важные черты распределения: его положение и степень разбросанности значений. Для более подробного описания используются начальные и центральные моменты высших порядков. Кроме математического ожидания на практике часто применяются и другие характеристики положения распределения значений.
|