Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ряд Тейлора





 

Теорема. (О разложении функции в степенной ряд). Если функция f (x) может быть разложена в сходящийся к ней степенной ряд (13.3.9)

, ………(13.3.10)

то это разложение единственно и коэффициенты степенного ряда в этом случае определяются формулами:

a 0 = f (x0), a 1 = f ¢(x 0), , …,

Доказательство. Пусть

При х = х 0 следует что f (x 0) = a0.

Последовательно дифференцируя равенство (13.3.10) получим

f ¢(x) = a 1 + 2 a 2 (xx 0) +…

f ¢¢(x) = 2 a 2 + 2∙3∙ a 3 (xx 0) +…

f ¢¢¢(x) = 2∙3∙ a 3 +…

…………..

f (n)(x) = n! an + …

……………

Положив в полученных равенствах х = х 0 найдём:

f ¢(x 0) = a 1.

f ¢¢(x 0) = 2 a 2. Þ ;

f ¢¢¢(x 0) = 2∙3∙ a 3 Þ

…………………………….

f ( n )(x0) = n! an Þ

………………………………

Таким образом, мы получили, что все коэффициенты а 0, а 1, а 2, ¼, ап, ¼, определяются единственным образом формулами:

 

a 0 = f (x 0), a 1 = f ¢(x 0), …, , …

что и доказывает теорему.

Подставляя найденные выражения в ряд (13.3.10) получим ряд

f (x)= f (x 0) + f ¢(x 0) (хх 0)+ +…+ +… (13.3.11)

 

Определение. Рядом Тейлора функции f (x) в окрестности точки х 0 называется степенной ряд

f (x 0) + f ¢(x 0) (хх 0)+ +…+ +… (13.3.12)

относительно разности (хх 0), а его коэффициенты ряда называются коэффициентами Тейлора функции f (x) в точке х 0.

Таким образом, мы установили, что если функцию f (x) можно разложить в степенной ряд по степеням (хх 0), то этот ряд обязательно является рядом Тейлора этой функции.

Обратим внимание на тот факт, что все рассуждения были сделаны в предположении, что f (x) может быть разложена в степенной ряд. Поставим теперь вопрос о том, когда заданную функцию можно разложить в степенной ряд. Как указано выше, необходимым условием для возможности такого разложения является дифференцируемость функции f (x) бесконечное число раз.. В дальнейшем станет ясно, что это условие не является достаточным.

Определение. Если в ряде (13.3.12) х 0 = 0, то полученный ряд называется рядом Маклорена, т.е.

f (x)= f (0) + f ¢(0) х + + …+ + … (13.3.13)

Определение. Многочлен называется многочленом Тейлора п - й степени функции f (x) по степеням (хх 0).

Определение. Величина

Rn (x) = f (x) – Sn (x) (13.3.14)

называется п - м остаточным членом ряда Тейлора функции f (x) в точке х 0.

Теорема. (Условие разложимости функции в ряд Тейлора). Для того, чтобы ряд Тейлора сходился на интервале (x 0- R; x 0+ R) и имел своей суммой функцию f (x) необходимо и достаточно, чтобы на этом интервале остаточный член Rn (x) ряда Тейлора стремился к нулю при п → ¥, т. е. для х (x 0- R; x 0+ R).

Из теоремы вытекает, что вопрос о разложимости функции в ряд Тейлора сводится к исследованию поведения остаточного члена Rn (x) при п → ¥. То есть, если для какой-либо функции формально написан ряд Тейлора, то для того, чтобыдоказать, что ряд представляет функцию необходимо или доказать, что остаточный член Rn (x)→0 при п → ¥, или каким-либо иным способом удостовериться, что ряд сходится к функции.

Для каждой каждой элементарной функции существует такое x 0 и такое R, что в интервале (x 0- R; x 0+ R) она разлагается в ряд Тейлора или (при x 0 = 0) в ряд Маклорена.

 







Дата добавления: 2015-08-27; просмотров: 729. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия