Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление определенных интегралов с помощью рядов





Степенные ряды имеют разнообразные приложения. С их помощью с любой заданной точностью вычисляют значения функций (в частности значения π и e). Значительную роль играют степенные ряды в приближенных методах решений дифференциальных уравнений. Определенные интегралы от различных типов функций за малым исключением не вычисляются по формуле Ньютона – Лейбница, например,

и др.

С помощью рядов находят приближенные значения таких определенных интегралов, которые или не выражаются через элементарные функции или сложны для вычислений. Среди них часто встречающиеся в практических приложениях математики.

Рассмотрим несколько примеров.

1. Пусть требуется вычислить интеграл .

Здесь первообразная от не является элементарной функцией. Для

вычисления этого интеграла разложим подынтегральную функцию в ряд

заменяя в разложении ,тогда

.

Интегрируя обе части этого равенства в пределах от 0 до a, получим

С помощью этого равенства мы можем при любом a вычислить данный интеграл с любой степенью точности.

2. Пусть требуется вычислить интеграл Этот интеграл не берется в элементарных функциях, поскольку первообразная функции не является элементарной. В то же время эта первообразная легко выражается в виде степенного ряда.

Из равенства

получаем

,

последний ряд сходится при всех значениях x.

Интегрируя почленно, получим

.

Сумма ряда вычисляется с любой заданной степенью точности при всех a.

 

 

Сводная таблица основных формул по теме «Функциональные ряды»

Понятие Определение, формула
Функциональный ряд Ряд вида u 1+ u 2+ u 3+¼+ un +¼= , где u 1, u 2,…, u n,…- функции переменной х.  
Степенной ряд х 0 ≠0, а 0+ а 1(х - х 0)+…+ аn (х - х 0) n +…= х 0 = 0,
Радиус ходимости По признаку Даламбера По радикальному признаку Коши    
Ряд Тейлора f (x)= f (x 0) + f ¢(x 0) (хх 0) + + …+ + …
Ряд Маклорена f (x)= f (0) + f ¢(0) х + + …+ + …
Разложение функций по степеням х  

 







Дата добавления: 2015-08-27; просмотров: 4476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия