Технология плезиохронной цифровой иерархии PDH
Цифровая аппаратура мультиплексирования и коммутации была разработана в конце 60-х годов компанией AT&T для решения проблемы связи крупных коммутаторов телефонных сетей между собой. Каналы с частотным уплотнением, применяемые до этого на участках АТС-АТС, исчерпали свои возможности по организации высокоскоростной многоканальной связи по одному кабелю. В технологии FDM для одновременной передачи данных 12 или 60 абонентских каналов использовалась витая пара, а для повышения скорости связи приходилось прокладывать кабели с большим количеством пар проводов или более дорогие коаксиальные кабели. Кроме того, метод частотного уплотнения высоко чувствителен к различного рода помехам, которые всегда присутствуют в территориальных кабелях, да и высокочастотная несущая речи сама создает помехи в приемной аппаратуре, будучи плохо отфильтрована. Для решения этой задачи была разработана аппаратура Т1, которая позволяла в цифровом виде мультиплексировать, передавать и коммутировать (на постоянной основе) данные 24 абонентов. Так как абоненты по-прежнему пользовались обычными телефонными аппаратами, то есть передача голоса шла в аналоговой форме, то мультиплексоры Т1 сами осуществляли оцифровывание голоса с частотой 8000 Гц и кодировали голос с помощью импульсно-кодовой модуляции (Pulse Code Modulation, PCM). В результате каждый абонентский канал образовывал цифровой поток данных 64 Кбит/с. Для соединения магистральных АТС каналы Т1 представляли собой слишком слабые средства мультиплексирования, поэтому в технологии была реализована идея образования каналов с иерархией скоростей. Четыре канала типа Т1 объединяются в канал следующего уровня цифровой иерархии - Т2, передающий данные со скоростью 6,312 Мбит/с, а семь каналов Т2 дают при объединении канал ТЗ, передающий данные со скоростью 44,736 Мбит/с. Аппаратура T1, T2 и ТЗ может взаимодействовать между собой, образуя иерархическую сеть с магистральными и периферийными каналами трех уровней скоростей. С середины 70-х годов выделенные каналы, построенные на аппаратуре T1, стали сдаваться телефонными компаниями в аренду на коммерческих условиях, перестав быть внутренней технологией этих компаний. Сети T1, а также более скоростные сети T2 и ТЗ позволяют передавать не только голос, но и любые данные, представленные в цифровой форме, - компьютерные данные, телевизионное изображение, факсы и т. п. Технология цифровой иерархии была позже стандартизована CCITT. При этом в нее были внесены некоторые изменения, что привело к несовместимости американской и международной версий цифровых сетей. Американская версия распространена сегодня кроме США также в Канаде и Японии (с некоторыми различиями), а в Европе применяется международный стандарт. Аналогом каналов Т в международном стандарте являются каналы типа El, E2 и ЕЗ с другими скоростями - соответственно 2,048 Мбит/с, 8,488 Мбит/с и 34,368 Мбит/с. Американский вариант технологии также был стандартизован ANSI. Несмотря на различия американской и международных версий технологии цифровой иерархии, для обозначения иерархии скоростей принято использовать одни и те же обозначения - DSn (Digital Signal n). В табл. 6.2 приводятся значения для всех введенных стандартами уровней скоростей обеих технологий. Таблица 6.2. Иерархия цифровых скоростей На практике в основном используются каналы Т1/Е1 и ТЗ/ЕЗ. Мультиплексор Т1 обеспечивает передачу данных 24-х абонентов со скоростью 1,544 Мбит/с в кадре, имеющем достаточно простой формат. В этом кадре последовательно передается по одному байту каждого абонента, а после 24-х байт вставляется один бит синхронизации. Первоначально устройства Т1 (которые дали имя также и всей технологии, работающей на скорости 1,544 Мбит/с) работали только на внутренних тактовых генераторах, и каждый кадр с помощью битов синхронизации мог передаваться асинхронно. Аппаратура Т1, а также более скоростная аппаратура Т2 и ТЗ за долгие годы существования претерпела значительные изменения. Сегодня мультиплексоры и коммутаторы первичной сети работают на централизованной тактовой частоте, распределяемой из одной точки всей сети. Однако принцип формирования кадра остался, поэтому биты синхронизации в кадре по-прежнему присутствуют. Суммарная скорость пользовательских каналов составляет 24 х 64 = 1,536 Мбит/с, а еще 8 Кбит/с добавляют биты синхронизации. В аппаратуре Т1 назначение восьмого бита каждого байта в кадре разное и зависит от типа передаваемых данных и поколения аппаратуры. При передаче голоса в сетях Т1 все 24 канала являются абонентскими, поэтому управляющая и контрольная информация передается восьмым (наименее значащим) битом замеров голоса. В ранних версиях сетей Т1 служебным был 8-й бит каждого байта кадра, поэтому реальная скорость передачи пользовательских данных составляла 56 Кбит/с (обычно восьмой бит отводился под такие служебные данные, как номер вызываемого телефонного абонента, сигнал занятости линии, сигнал снятия трубки и т. п.). Затем технология была улучшена и для служебных целей стали использовать только каждый шестой кадр. Таким образом, в пяти кадpax из шести пользовательские данные представлены всеми восемью битами, а в шестом - только семью. При передаче компьютерных данных канал Т1 предоставляет для пользовательских данных только 23 канала, а 24-й канал отводится для служебных целей, в основном - для восстановления искаженных кадров. Для одновременной передачи как голосовых, так и компьютерных данных используются все 24 канала, причем компьютерные данные передаются со скоростью 56 Кбит/с. Техника использования восьмого бита для служебных целей получила название «кражи бита» (bit robbing). При мультиплексирования 4-х каналов Т1 в один канал Т2 между кадрами DS-1 по-прежнему используется один бит синхронизации, а кадры DS-2 (которые состоят из 4-х последовательных кадров DS-1) разделяются 12 служебными битами, которые предназначены не только для разделения кадров, но и для их синхронизации. Соответственно, кадры DS-3 состоят из 7 кадров DS-2, разделенных служебными битами. Международная версия этой технологии описана в стандартах G.700-G.706. Она более логична, так как не использует схему «кражи бита». Кроме того, она основана на постоянном коэффициенте кратности скорости 4 при переходе к следующему уровню иерархии. Вместо восьмого бита в канале Е1 на служебные цели отводятся 2 байта из 32. Для голосовых каналов или каналов данных остается 30 каналов со скоростью передачи 64 Кбит/с каждый. Пользователь может арендовать несколько каналов 64 Кбит/с (56 Кбит/с) в канале Т1/Е1. Такой канал называется «дробным» (fractional) каналом Т1/Е1. В этом случае пользователю отводится несколько тайм - слотов работы мультиплексора. Физический уровень технологии PDH поддерживает различные виды кабелей: витую пару, коаксиальный кабель и волоконно-оптический кабель. Основным вариантом абонентского доступа к каналам Т1/Е1 является кабель из двух витых пар с разъемами RJ-48. Две пары требуются для организации дуплексного режима передачи данных со скоростью 1,544/2,048 Мбит/с. Для представления сигналов используется: в каналах Т1 биполярный потенциальный код B8ZS, в каналах El-биполярный потенциальный код HDB3. Для усиления сигнала на линиях Т1 через каждые 1800 м (одна миля) устанавливаются регенераторы и аппаратура контроля линии. Коаксиальный кабель благодаря своей широкой полосе пропускания поддерживает канал Т2/Е2 или 4 канала Т1/Е1. Для работы каналов ТЗ/ЕЗ обычно используется либо коаксиальный кабель, либо волоконно-оптический кабель, либо каналы СВЧ. Физический уровень международного варианта технологии определяется стандартом G.703, названием которого обозначается тип интерфейса маршрутизатора или моста, подключаемого к каналу Е1. Американский вариант интерфейса носит название Т1. Как американский, так и международный варианты технологии PDH обладают несколькими недостатками. Одним из основных недостатков является сложность операций мультиплексирования и демультиплексирования пользовательских данных.Сам термин «плезиохронный», используемый для этой технологии, говорит о причине такого явления - отсутствии полной синхронности потоков данных при объединении низкоскоростных каналов в более высокоскоростные. Изначально асинхронный подход к передаче кадров породил вставку бита или нескольких бит синхронизации между кадрами. В результате для извлечения пользовательских данных из объединенного канала необходимо полностью демультиплексировать кадры этого объединенного канала. Например, если требуется получить данные одного абонентского канала 64 Кбит/с из кадров канала ТЗ, необходимо произвести демультиплексирование этих кадров до уровня кадров Т2, затем - до уровня кадров Т1, а затем демультиплексировать и сами кадры Т1. Для преодоления этого недостатка в сетях PDH реализуют некоторые дополнительные приемы, уменьшающие количество операций демультиплексирования при извлечения пользовательских данных из высокоскоростных каналов. Например, одним из таких приемов является «обратная доставка» (back hauling). Пусть коммутатор 1 канала ТЗ принимает поток данных, состоящий из 672 пользовательских каналов, при этом он должен передать данные одного из этих каналов пользователю, подключенному к низкоскоростному выходу коммутатора, а весь остальной поток данных направить транзитом через другие коммутаторы в некоторый конечный демультиплексор 2, где поток ТЗ полностью демультиплексируется на каналы 64 Кбит/с. Для экономии коммутатор 1 не выполняет операцию демультиплексирования своего потока, а получает данные своего пользователя только при их «обратном проходе», когда конечный демультиплексор выполнит операцию разбора кадров и вернет данные одного из каналов коммутатору 1. Естественно, такие сложные взаимоотношения коммутаторов усложняют работу сети, требуют ее тонкого конфигурирования, что ведет к большому объему ручной работы и ошибкам. Другим существенным недостатком технологии PDH является отсутствие развитых встроенных процедур контроля и управления сетью. Служебные биты дают мало информации о состоянии канала, не позволяют его конфигурировать и т. п. Нет в технологии и процедур поддержки отказоустойчивости, которые очень полезны для первичных сетей, на основе которых строятся ответственные междугородные и международные сети. В современных сетях управлению уделяется большое внимание, причем считается, что управляющие процедуры желательно встраивать в основной протокол передачи данных сети. Третий недостаток состоит в слишком низких по современным понятиям скоростях иерархии PDH. Волоконно-оптические кабели позволяют передавать данные со скоростями в несколько гигабит в секунду по одному волокну, что обеспечивает консолидацию в одном кабеле десятков тысяч пользовательских каналов, но это свойство технология PDH не реализует - ее иерархия скоростей заканчивается уровнем 139 Мбит/с. Все эти недостатки устранены в новой технологии первичных цифровых сетей, получившей название синхронной цифровой иерархии - Synchronous DigitalHierarchy, SDH. Технология синхронной цифровой иерархии SONET/SDH Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием «Синхронные оптические сети» - Synchronous Optical NETs, SONET. Первый вариант стандарта появился в 1984 году. Затем эта технология была стандартизована комитетом T1 ANSI. Международная стандартизация технологии проходила под эгидой Европейского института телекоммуникационных стандартов (ETSI) и CCITT совместно с ANSI и ведущими телекоммуникационными компаниями Америки, Европы и Японии. Основной целью разработчиков международного стандарта было создание такой технологии, которая позволяла бы передавать трафик всех существующих цифровых каналов (как американских Т1 - ТЗ, так и европейских Е1 - ЕЗ) в рамках высокоскоростной магистральной сети на волоконно-оптических кабелях и обеспечила бы иерархию скоростей, продолжающую иерархию технологии PDH, до скорости в несколько гигабит в секунду. В результате длительной работы удалось разработать международный стандарт Synchronous Digital Hierarchy, SDH (спецификации G.707-G.709), а также доработать стандарты SONET таким образом, что аппаратура и стеки SDH и SONET стали совместимыми и могут мультиплексировать входные потоки практически любого стандарта PDH - как американского, так и европейского. В терминологии и начальной скорости технологии SDH и SONET остались расхождения, но это не мешает совместимости аппаратуре разных производителей, а технология SONET/ SDH фактически стала считаться единой технологией. В России применяются стандарты и адаптированная терминология SDH. Иерархия скоростей при обмене данными между аппаратурой SONET/SDH, которую поддерживает технология SONET/SDH, представлена в табл. 6.3. Таблица 6.3. Скорости технологии SONET/SDH В стандарте SDH все уровни скоростей (и, соответственно, форматы кадров для этих уровней) имеют общее название: STM-n - Synchronous Transport Module level n. В технологии SONET существуют два обозначения для уровней скоростей: STS-n - Synchronous Transport Signal level n, употребляемое при передаче данных электрическим сигналом, и ОС-n - Optical Carrier level n, употребляемое при передаче данных световым лучом по волоконно-оптическому кабелю. Форматы кадров STS и ОС идентичны. Как видно из таблицы, стандарт SONET начинается со скорости 51,84 Мбит/с, а стандарт SDH - со скорости 155,52 Мбит/с, равной утроенной начальной скорости SONET. Международный стандарт определил начальную скорость иерархии в 155,52 Мбит/с, чтобы сохранялась стройность и преемственность технологии SDH с технологией PDH - в этом случае канал SDH может передавать данные уровня DS-4, скорость которых равна 139,264 Мбит/с. Любая скорость технологии SONET/ SDH кратна скорости STS-1. Некоторая избыточность скорости 155,52 Мбит/с для передачи данных уровня DS-4 объясняется большими накладными расходами на служебные заголовки кадров SONET/SDH. Кадры данных технологий SONET и SDH, называемые также циклами, по форматам совпадают, естественно начиная с общего уровня STS-3/STM-1. Эти кадры обладают весьма большой избыточностью, так как передают большое количество служебной информации, которая нужна для: · обеспечения гибкой схемы мультиплексирования потоков данных разных скоростей, позволяющих вставлять (add) и извлекать (drop) пользовательскую информацию любого уровня скорости, не демультиплексируя весь поток; · обеспечения отказоустойчивости сети; · поддержки операций контроля и управления на уровне протокола сети; · синхронизации кадров в случае небольшого отклонения частот двух сопрягаемых сетей. Стек протоколов и основные структурные элементы сети SONET/SDH показаны на рис. 6.7. Рис. 6.7. Стек протоколов и структура сети SONET/SDH Ниже перечислены устройства, которые могут входить в сеть технологии SONET/ SDH. · Терминальные устройства (Terminal, Т), называемые также сервисными адаптерами (Service Adapter, SA), принимают пользовательские данные от низкоскоростных каналов технологии PDH (типа Т1/Е1 или ТЗ/ЕЗ) и преобразуют их в кадры STS-n. (Далее аббревиатура STS-n используется как общее обозначение для кадров SONET/SDH.) · Мультиплексоры (Muliplexers) принимают данные от терминальных устройств и мультиплексируют потоки кадров разных скоростей STS-n в кадры более высокой иерархии STS-m. · Мультиплексоры «ввода-вывода» (Add-Drop Multiplexers) могут принимать и передавать транзитом поток определенной скорости STS-n, вставляя или удаляя «на ходу», без полного демультиплексирования, пользовательские данные, принимаемые с низкоскоростных входов. · Цифровые кросс-коннекторы (Digital Cross-Connect, DCC), называемые также аппаратурой оперативного переключения (АОП), предназначены для мультиплексирования и постоянной коммутации высокоскоростных потоков STS-n различного уровня между собой (на рис. 6.7 не показаны). Кросс-коннектор представляет собой разновидность мультиплексора, основное назначение которого - коммутация высокоскоростных потоков данных, возможно, разной скорости. Кросс-коннекторы образуют магистраль сети SONET/SDH. · Регенераторы сигналов, используемые для восстановления мощности и формы сигналов, прошедших значительное расстояние по кабелю. На практике иногда сложно провести четкую грань между описанными устройствами, так как многие производители выпускают многофункциональные устройства, которые включают терминальные модули, модули «ввода-вывода», а также модули кросс-коннекторов. Стек протоколов состоит из протоколов 4-х уровней. · Физический уровень, названный в стандарте фотонным (photonic), имеет дело с кодированием бит информации с помощью модуляции света. Для кодирования сигнала применяется метод NRZ (благодаря внешней тактовой частоте его плохие самосинхронизирующие свойства недостатком не являются). · Уровень секции (section) поддерживает физическую целостность сети. Секцией в технологии называется каждый непрерывный отрезок волоконно-оптического кабеля, который соединяет пару устройств SONET/SDH между собой, например мультиплексор и регенератор. Протокол секции имеет дело с кадрами и на основе служебной информации кадра может проводить тестирование секции и поддерживать операции административного контроля. В заголовке протокола секции имеются байты, образующие звуковой канал 64 Кбит/с, а также канал передачи данных управления сетью со скоростью 192 Кбит/с. Заголовок секции всегда начинается с двух байт 11110110 00101000, которые являются флагами начала кадра. Следующий байт определяет уровень кадра: STS-1, STS-2 и т. д. За каждым типом кадра закреплен определенный идентификатор. · Уровень линии (line) отвечает за передачу данных между двумя мультиплексорами сети. Протокол этого уровня работает с кадрами разных уровней STS-n для выполнения различных операций мультиплексирования и демультиплексирования, а также вставки и удаления пользовательских данных. Таким образом, линией называется поток кадров одного уровня между двумя мультиплексорами. Протокол линии также ответственен за проведения операций реконфигури-рования линии в случае отказа какого-либо ее элемента - оптического волокна, порта или соседнего мультиплексора. · Уровень тракта (path - путь) отвечает за доставку данных между двумя конечными пользователями сети. Тракт (путь) - это составное виртуальное соединение между пользователями. Протокол тракта должен принять данные, поступающие в пользовательском формате, например формате Т1, и преобразовать их в синхронные кадры STS-n/STM-m. Как видно из рис. 6.7, регенераторы работают только с протоколами двух нижних уровней, отвечая за качество сигнала и поддержания операций тестирования и управления сетью. Мультиплексоры работают с протоколами трех нижних уровней, выполняя, кроме функций регенерации сигнала и реконфигурации секций, функцию мультиплексирования кадров STS-n разных уровней. Кросс-коннектор представляет собой пример мультиплексора, который поддерживает протоколы трех уровней. И наконец, функции всех четырех уровней выполняют терминалы, а также мультиплексоры «ввода-вывода», то есть устройства, работающие с пользовательскими потоками данных. Формат кадра STS-1 представлен на рис. 6.8. Кадры технологии SONET/SDH принято представлять в виде матрицы, состоящей из n строк и m столбцов. Такое представление хорошо отражает структуру кадра со своего рода подкадрами, называемыми виртуальными контейнерами (Virtual Container, VC - термин SDH) или виртуальными притоками (Virtual Tributaries, VT - термин SONET). Виртуальные контейнеры - это подкадры, которые переносят потоки данных, скорости которых ниже, чем начальная скорость технологии SONET/SDH в 51,84 Мбит/с (например, поток данных Т1 со скоростью 1,544 Мбит/с). Рис. 6.8. Формат кадра STS-1 Кадр STS-1 состоит из 9 строк и 90 столбцов, то есть из 810 байт данных. Между устройствами сети кадр передается последовательно по байтам - сначала первая строка слева направо, затем вторая и т. д. Первые 3 байта каждой строки представляют собой служебные заголовки. Первые 3 строки представляют собой заголовок из 9 байт протокола уровня секции и содержат данные, необходимые для контроля и реконфигурации секции. Остальные 6 строк составляют заголовок протокола линии, который используется для реконфигурации, контроля и управления линией. Устройства сети SONET/SDH, которые работают с кадрами, имеют достаточный буфер для размещения в нем всех байт кадра, протекающих синхронно через устройство, поэтому устройство для анализа информации на некоторое время имеет полный доступ ко всем частям кадра. Таким образом, размещение служебной информации в несмежных байтах не представляет сложности для обработки кадра. Еще один столбец представляет собой заголовок протокола пути. Он используется для указания местоположения виртуальных контейнеров внутри кадра, если кадр переносит низкоскоростные данные пользовательских каналов типа Т1/Е1. Местоположение виртуальных контейнеров задается не жестко, а с помощью системы указателей (pointers). Концепция указателей является ключевой в технологии SONET/SDH. Указатель призван обеспечить синхронную передачу байт кадров с асинхронным характером вставляемых и удаляемых пользовательских данных. Указатели используются на разных уровнях. Рассмотрим, как с помощью указателя выполняется выделение поля данных кадра из синхронного потока байт. Несмотря на питание всех устройств сети SONET/SDH тактовой частотой синхронизации из одного центрального источника, синхронизация между различными сетями может незначительно нарушаться. Для компенсации этого эффекта началу поля данных кадра (называемого в стандарте SPE - Synchronous Payload Environment) разрешается смещаться относительно начала кадра произвольным образом. Реальное начало поля SPE задается указателем HI, размещенным в заголовке протокола линии. Каждый узел, поддерживающий протокол линии, обязан следить за частотой поступающих данных и компенсировать ее несовпадение с собственной частотой за счет вставки или удаления одного байта из служебного заголовка. Затем узел должен нарастить или уменьшить значения указателя первого байта поля данных СРЕ относительно начала кадра STS-1. В результате поле данных может размещаться в двух последовательных кадрах, как это показано на рис. 6.9. Рис. 6.9. Использование указателей для поиска данных в кадре Тот же прием применяется для вставки или удаления пользовательских данных в потоке кадров STS-n. Пользовательские данные каналов типа Т1/Е1 или ТЗ/ЕЗ асинхронны по отношению к потоку байтов кадра STS-n. Мультиплексор формирует виртуальный контейнер и, пользуясь указателем HI, находит начало очередного поля данных. Затем мультиплексор анализирует заголовок пути и находит в нем указатель Н4, который описывает структуру содержащихся в кадре виртуальных контейнеров. Обнаружив свободный виртуальный контейнер нужного формата, например для 24 байт канала Т1, он вставляет эти байты в нужное место поля данных кадра STS-1. Аналогично производится поиск начала данных этого канала при выполнении операции удаления пользовательских данных. Таким образом, кадры STS-n всегда образуют синхронный поток байтов, но с помощью изменения значения соответствующего указателя можно вставить и извлечь из этого потока байты низкоскоростного канала, не выполняя полного демультиплексирования высокоскоростного канала. Виртуальные контейнеры также содержат дополнительную служебную информацию по отношению к данным пользовательского канала, который они переносят. Поэтому виртуальный контейнер для переноса данных канала Т1 требует скорости передачи данных не 1,544 Мбит/с, а 1,728 Мбит/с. В технологии SONET/SDH существует гибкая, но достаточно сложная схема использования поля данных кадров STS-n. Сложность этой схемы в том, что нужно «уложить» в кадр наиболее рациональным способом мозаику из виртуальных контейнеров разного уровня. Поэтому в технологии SONET/SDH стандартизовано шесть типов виртуальных контейнеров, которые хорошо сочетаются друг с другом при образовании кадра STS-n. Существует ряд правил, по которым контейнеры каждого вида могут образовывать группы контейнеров, а также входить в состав контейнеров более высокого уровня. Отказоустойчивость сети SONET/SDH встроена в ее основные протоколы. Этот механизм называется автоматическим защитным переключением - Automatic Protection Switching, APS. Существуют два способа его работы. В первом способе защита осуществляется по схеме 1:1. Для каждого рабочего волокна (и обслуживающего его порта) назначается резервное волокно. Во втором способе, называемом 1:n, для защиты n волокон назначается только одно защитное волокно. В схеме защиты 1:1 данные передаются как по рабочему, так и по резервному волокну. При выявлении ошибок принимающий мультиплексор сообщает передающему, какое волокно должно быть рабочим. Обычно при защите 1:1 используется схема двух колец, похожая на двойные кольца FDDI (рис. 6.10), но только с одновременной передачей данных в противоположных направлениях. При обрыве кабеля между двумя мультиплексорами происходит сворачивание колец, и, как и в сетях FDDI, из двух колец образуется одно рабочее. Рис. 6.10. Использование двойных колец для обеспечения отказоустойчивости сети SONET/SDH Применение схемы резервирования 1:1 не обязательно требует кольцевого соединения мультиплексоров, можно применять эту схему и при радиальном подключении устройств, но кольцевые структуры решают проблемы отказоустойчивости эффективнее - если в сети нет колец, радиальная схема не сможет ничего сделать при обрыве кабеля между устройствами. Управление, конфигурирование и администрирование сети SONET/SDH также встроено в протоколы. Служебная информация протокола позволяет централизованно и дистанционно конфигурировать пути между конечными пользователями сети, изменять режим коммутации потоков в кросс-коннекторах, а также собирать подробную статистику о работе сети. Существуют мощные системы управления сетями SDH, позволяющие прокладывать новые каналы простым перемещением мыши по графической схеме сети.
|