Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формулы и свойства логарифмов





Логарифмом числа по основанию () называется такое число , что , то есть записи и равносильны. Логарифм имеет смысл, если .

Если немного перефразировать - Логарифм числа по основанию определяется как показатель степени, в которую надо возвести число , чтобы получить число (Логарифм существует только у положительных чисел).

Логарифм в переводе с греческого буквально означает "число, изменяющее отношение".

Специальные обозначения:

1. Натуральный логарифм - логарифм по основанию , где - число Эйлера.

2. Десятичный логарифм - логарифм по основанию 10.

Свойства логарифмов:

- основное логарифмическое тождество.

Логарифм единицы по любому положительному, отличному от 1, основанию равен нулю. Это возможно потому, что из любого действительного числа можно получить 1 только возведя его в нулевую степень.

- логарифм произведения.

Логарифм произведения равен сумме логарифмов сомножителей.

- логарифм частного.

Логарифм частного (дроби) равен разности логарифмов сомножителей.

- логарифм степени.

Логарифм степени равен произведению показателя степени на логарифм ее основания.

- переход к новому основанию.

 

Текст задания:

Вычислите логарифмы с использованием следующих формул:
и

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

Задачи на основное логарифмическое тождество:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

Задачи на формулу перехода к новому основанию

1)

2)

3)

4)

5)

6)

7)

8)

9)

Раздел 3. Основы тригонометрии. Функции, их свойства и графики.

Уравнения и неравенства

Самостоятельная работа № 6

Тема: Формулы половинного аргумента

Цель: закрепить знания и умения студентов применять основные тригонометрические формулы.

Теоритическое обоснование:

Формулы половинного аргумента

1. Синус половинного угла

Примечание: Знак перед корнем выбирается в зависимости от квадранта, в который попадает угол α;/2 в левой части. Данное правило справедливо также для других формул, приведенных ниже.

2. Косинус половинного угла

3. Тангенс половинного угла

4. Котангенс половинного угла

5. Выражение синуса через тангенс половинного угла

6. Выражение косинуса через тангенс половинного угла

7. Выражение тангенса через тангенс половинного угла

8. Выражение котангенса через тангенс половинного угла

Текст задания:

1. Доказать тождества:

а). 1 + 2 cos 2α + cos 4α = 4 cos2 α cos 2α.

б). 1 — 2 cos 3α + cos 6α = — 4 sin2 3α/2 • cos 3α.

в). 1 + sin α = 2cos2 (π/4α/2).

г). 1— sin α = 2sin2 (π/4α/2).

2. Упростить выражение

3. Найти sin α, cos α и tg α, если известно, что cos 2α = —0,6.

4. Найти sin α/2, cos α/2 и tg α/2, если известно, что | cos α | = 0,6, причем угол α, оканчивается во 2-й четверти,

5. Найти tg α, если sin 2α = 1/3.

6. Вычислить:

а). sin (1/2 arccos 0,8). в). tg [ 1/2 arcsin (— 0,8)]

б). cos (1/2 arcsin 0,6) г). tg [ 1/2 arctg (— 0,75)]

Самостоятельная работа № 7

Тема: Преобразование тригонометрических выражений

Цель: закрепить знания и умения студентов по освоению свойств тригонометрических функций.

Теоритическое обоснование:

 

Формулы приведения:

Текст задания:

1. Найти значение выражения , если известно, что tg α = 1/3

2. Найти значение выражения , если известно, что котангенс угла α; не определен.

3. Найти значение выражения , если известно, что ctg α = ½

4. Упростить выражения:

5. Доказать тождества:

Самостоятельная работа № 8

Тема: Решение тригонометрических неравенств (синус, косинус).

Цель: закрепить знания и умения студентов по освоению методов решения тригонометрических неравенств.

Теоритическое обоснование:

Утверждение 1. Множество решений неравенства sin x > a, есть

  1. R, если a < -1;
  2. (arcsin a + 2p k; p - arcsin a + 2p k), если -1 ≤ a < 1;
  3. Пустое множество, если a ≥ 1.

Утверждение 2. Множество решений неравенства sin x < a, есть

  1. R, если a > 1;
  2. (-p - arcsin a + 2p k; arcsin a + 2p k), если -1 < a ≤ 1;
  3. Пустое множество, если a ≤ -1.

Утверждение 3. Множество решений неравенства cos x > a, есть

  1. R, если a < -1;
  2. (2p k - arccos a; 2p k + arccos a), если -1 ≤ a < 1;
  3. Пустое множество, если a ≥ 1.

Утверждение 4. Множество решений неравенства cos x < a, есть

   
  1. R, если a > 1;
  2. (2p k + arccos a; 2p(k + 1) - arccos a), если -1 < a ≤ 1;
  3. Пустое множество, если a ≤ -1.

 

Текст задания:

Решить неравенства:

1. sin2 x < cos x.

2. cos x + cos2 x + cos3 x ≥ 0.

3. 6sin2 x - 5sin x + 1 > 0.

4.

5.

6. 2sin2 x + 9cos x - 6 ≥ 0.

7.

8.

9. cos2 x + sin x ≥ 0.

Самостоятельная работа № 9

Тема: Решение тригонометрических неравенств (тангенс, котангенс).

Цель: закрепить знания и умения студентов по освоению методов решения тригонометрических неравенств.

Теоритическое обоснование:

Утверждение 1. Множество решений неравенства

tg x > a, есть  

Утверждение 2. Множество решений неравенства

tg x < a, есть  

Утверждение 3. Множество решений неравенства

ctg x > a, есть (p k; arcctg a + p k).  

Утверждение 4. Множество решений неравенства

ctg x < a, есть (arcctg a + p k; p(k + 1))  

Замечания. 1. Если знак неравенства нестрогий, то во множестве решений неравенства включается также и множество решений соответствующего уравнения.

Текст задания:

Решить неравенства:

1. -2 ≤ tgx < 1;

2.

3. ctg2 x - ctg x - 2 ≤ 0;

4. tg3 x + tg2 x - tg x - 1 > 0.

5. tg x + ctg x ≤ 2.

6.

 

Раздел 4. Начала математического анализа

Самостоятельная работа № 10

Тема: Первый и второй замечательный предел

Цель: закрепить знания и умения студентов по вычислению пределов используя первый и второй замечательные пределы.

Теоритическое обоснование:

Первый замечательный предел:

Следствия из первого замечательного предела:

Второй замечательный предел:

Следствия из второго замечательного предела:

Текст задания:

Вычислить пределы:

1. .

2. .

3. .

4. .

5. .

6.

7.

8.

9.

10.

11.

12.

13.

14. - не определен.

Самостоятельная работа № 11

Тема: Применение производной в прикладных задачах

Цель: закрепить знания и умения студентов по освоению темы, формировать навыки прикладного использования аппарата производной.

Теоритическое обоснование:

Текст задания:

1. Исследуйте функцию y = 1/3x3- 3x2 + 8x и постройте ее график.

2. Исследовать и построить график функции: y = 3x4- 4x3 - 12x2 + 10.

3. Найти ускорение тела, движущегося по закону s (t) = 2 t 3 + 5 t 2 + 4 t (s — путь в метрах, t — время в минутах), в момент времени: a) t = 40 сек; б) t = 1 ч.

4. Найти ускорение тела, движущегося по закону s = √ t (s — путь в метрах, t — время в минутах), в произвольный момент времени t.

5. Для данных функций найти производные всех порядков:

1. у = (х + 2)3. 2. у = х 2х — 1. 3. у = cos х.

4. у = (2 х — 1)3. 5. у = х 5+ 4 х 3 — 7 х 2 6. у = (1 + х)100.

6. Доказать, что для функции у = a sin x + b cos х справедливо соотношение y IV= у.

7. Сколько раз нужно продифференцировать функцию у = (х 2 + 1)100, чтобы в результате получился многочлен 50-й степени?

 

Самостоятельная работа № 12

Тема: Нахождение скорости для процесса, заданного формулой

Цель: закрепить знания и умения студентов по освоению темы, формировать навыки прикладного использования аппарата производной.

Теоритическое обоснование:







Дата добавления: 2015-08-27; просмотров: 2688. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия