Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет влажностного режима ограждающей конструкции




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

(графоаналитический метод Фокина-Власова)

 

Цель последующих вычислений - оценка влажностного состояния ограждающих конструкций зданий, которое оказывает большое влияние на теплозащитные свойства и долговечность конструкций.

 

3.1. Выбор расчетных параметров наружного воздуха

Влажностный режим рассматривается дифференцированно по периодам года. При этом к зимнему периоду относятся месяцы со средней температурой наружного воздуха ниже минус 5ºС, к весенне-осеннему (переходному) периоду относятся месяцы со среднемесячными температурами наружного воздуха в пределах от минус 5ºС до плюс 5ºС, к летнему периоду - со среднемесячными температурами выше плюс 5ºС.

 

Определение расчетных параметров наружного воздуха

Таблица 3.1

№ п/п Период года Месяцы t ext , ºС eext , Па Кол-во месяцев zi Средние за период
t ext i,, ºС eext i,, Па
Зимний t <- 5 ºС            
Летний t >+5 ºС            
Весенне-осенний - 5 ºС ≤ t ≤ +5 ºС            

Среднемесячные значения температур t ext и парциальных давлений водяного пара eext наружного воздуха для заданного района строительства берутся из таблицы А.2 Приложения А.

Обработка климатических параметров ведется в форме табл. 3.1.

Устанавливаются средние за период значения температуры t ext i и парциального давления водяного пара наружного воздуха eexti для всех периодов года (i – номер периода).

3.2. Определение расчетных параметров внутреннего воздуха

Температура внутреннего воздуха tint, °C, и относительная влажность внутреннего воздуха jint, %, принимаются по табл.1.2 в соответствии с заданием.

Парциальное давление насыщенного водяного пара Eint принимается при данной температуре внутреннего воздуха tintпо таблице В.1 Приложения В.

Парциальное давление водяного пара, содержащегося в воздухе помещения,e int, рассчитывается по формуле:

eint = (jint / 100) Eint(3.1)

 

3.3. Определение значений температур по толщине ограждающей конструкции в зимний, летний и весенне-осенний периоды года

Задача решается графическим методом, как показано на рис. 1.

Для этого:

а) по оси абсцисс в выбранном масштабе следует отложить последовательно термические сопротивления всех слоев конструкции, а также внутреннего и наружного пограничных слоев воздуха (табл.1.3). На рис. 1 приведен пример с трехслойной стеной. Слой утеплителя дополнительно разбивается на несколько частей (в данном случае на 4 части). В результате по толщине стены отмечено 7 сечений;

б) по вертикали на внешних границах воздушных слоев в принятом масштабе откладываются значения температур внутреннего tint и наружного воздуха: для зимнего (t ext1), летнего (t ext2)и весенне-осеннего (t ext3)периодов года. Значения берутся из табл. 3.1.

Строятся температурные графики для трех периодов года (в условиях стационарной теплопередачи графики - прямые линии);

в) определяются значения температур в каждом сечении, полученные данные сводятся в табл. 3.2. Принимая эти температуры за точку росы и используя таблицы В.1 и В.2 Приложения В, находят соответствующие давления насыщенного водяного пара Еи заносят их в табл. 3.2.

 

Таблица 3.2

№ сечения Периоды года
Зима Лето Весна-Осень
t , ºС Е, Па t , ºС Е, Па t , ºС Е, Па
           
           
           
           
           
           
           

3.4. Определение сопротивлений паропроницанию слоев ограждающей конструкции.

 

Значение сопротивления паропроницанию одного конструктивного слоя Rvp определяется по формуле:

Rvp = d / m , (3.2)

где d - толщина слоя ограждающей конструкции, м;

m - расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции, мг/(м·ч·Па), принимаемый по приложению Б.

Сопротивление паропроницанию измеряется в м2 · ч · Па/мг.

Сопротивление паропроницанию многослойного ограждения равно сумме сопротивлений паропроницанию отдельных слоев:

Rvp = Rvp1 + Rvp2 + … +Rvpn , (3.3)

где Rvp1, Rvp2, Rvpn - сопротивления паропроницанию отдельных слоев.

 

3.5. Проверка возможности конденсации влаги внутри ограждающей конструкции

Проверка проводится графическим способом. Для этого:

а) по оси абсцисс в выбранном масштабе откладываются последовательно сопротивления паропроницанию всех слоев конструкции Rvp (пример с трехслойной стеной показан на рис.2а, б).

С рисунка 1 переносятся отмеченные ранее сечения с сохранением их нумерации;

б) по оси ординат (внутренняя поверхность ограждения) в выбранном масштабе откладывается значение eint, а на наружной поверхности откладывается среднее значение парциального давления водяного пара за зимний период eext1(рис.2а) (При отсутствии «зимнего» периода строится график для переходного периода, т.е. наиболее холодного). Прямая линия, соединяющая eintи eext1,- график изменения парциального давления водяного пара в ограждающей конструкции без учета возможной конденсации при установившемся процессе паропроницания;

в) по данным табл.3.2 для зимнего периода строится график изменения давления насыщенного водяного пара Е(на рис.2а – пунктирная линия);

г) проводится анализ взаимного расположения графиков Еи eint - eext(тонкая сплошная линия). Если графики не пересекаются, то конденсация водяного пара в ограждении отсутствует; в случае пересечения или касания графиков в конструкции возможна конденсация влаги;

д) аналогичные построения выполняются отдельно для летнего (рис.2б) и весенне-осеннего периодов года. Для построения графика изменения парциального давления водяного пара в конструкции используются средние значения за летний период eext2и весенне-осенний период eext3 , взятые из табл.3.1;

е) в случае конденсации влаги (например, зимой) определяется плоскость или зона конденсации (заштрихована на рисунке 2а).

Для этого из концов прямой eint - eext1 проводятся касательные к графику Е. Область между точками касания Ек' и Ек" - зона конденсации. При совпадении точек касания получается плоскость конденсации.

Затем проводится итоговый график изменения парциального давления с учетом конденсации водяного пара (интенсивная линия, рис. 2а);

ж) зона (плоскость) конденсации влаги, образовавшаяся в период влагонакопления,переносится на график, соответствующий периоду без конденсации влаги в ограждении. В этот период происходит испарение накопившейся влаги. Проводится итоговый график изменения парциального давления, как это показано на рис. 2б (интенсивная линия);

з) на рисунках стрелками указывают направление движения влаги Р' и Р'' (к зоне или от зоны конденсации - в сторону уменьшения парциального давления водяного пара).

Если конденсация влаги отсутствует в течение года, влажностный режим ограждающей конструкции считается удовлетворительным, и далее расчет не проводится.

 

3.6. Расчет количества влаги, подходящей к зоне конденсации или отходящей от нее за зимний, летний и весенне-осенний периоды года.

 

Для каждого периода года определяется количество влаги, подходящей (уходящей) на участке, предшествующем зоне конденсации, Р', а также – уходящей из зоны конденсации, Р" , по формулам:

(3.4)

(3.5)

гдеR ivp- сопротивление паропроницанию от внутренней поверхности до начала зоны конденсации (рис.2);

Rеvp - сопротивление паропроницанию от конца зоны конденсации до наружной поверхности (рис. 2);

z – продолжительность периода в месяцах (табл.3.1);

множитель 722 среднее количество часов в месяце;

значения Ек'и Ек''определяются по графикам (см. рис. 2). В случае плоскости конденсации Ек' = Ек'' = Ек.

Количество влаги Р' и Р" определяется для каждого периода года.

Примечание

1. Р'и Р" рассчитываются по абсолютной величине.

2. Единицы измерения Р'и Р" – мг/м2; значения будут получаться достаточно большие. Поэтому целесообразно привести их к виду: х,хх ∙ 106 (например: 2,17 ∙ 106 или 0,74 ∙ 106).

 

Результаты расчетов сводятся в табл. 3.3. При этом Р' и Р" принимаются со знаком «плюс», если соответствующее количество влаги перемещается к зоне (плоскости) конденсации, и со знаком «минус», если количество влаги перемещается от зоны (плоскости) конденсации.

Таблица 3.3

Период года Рi ' Рi "
Зима    
Лето    
Весна-Осень    

 

 

3.7. Проверка влажностного режима ограждающей конструкции из условия недопустимости накопления влаги в ней за годовой период эксплуатации

 

Определяется годовой баланс влаги:

Рi ' + Рi" = Р (3.6)

Получение результата Р ≤ 0 свидетельствует о том, что в течение года влаги может испариться больше, чем накопилось. Следовательно, конструкция удовлетворяет строительным нормам.

При Р > 0 количество накопившейся влаги превышает количество испарившейся, что недопустимо.

 

3.8. Проверка влажностного режима ограждающей конструкции из условия непревышения допустимой массовой влажности материала

Для того, чтобы относительная массовая влажность увлажняемого материала к концу периода влагонакопления не превышала допустимое значение (соответствующее полному сорбционному увлажнению материала), должно выполняться условие:

∆ Р ≥ Рк(3.7)

Здесь Рк – количество конденсата, накопившегося в конструкции к концу периода влагонакопления:

Рк = ∑ Рi '+ Рi" , (3.8)

где значения Рi 'и Рi"берутся только для тех периодов года, когда происходит конденсация влаги (из табл.3.3);

Р – допустимое количество влаги, которое может поглотить 1м² теплоизоляционного слоя:

∆Р = 104 · ∆wav · r · d, (3.9)

где Dwav-предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления, принимаемое по таблице 3.4;

r- плотность теплоизоляционного слоя, кг/м³;

d- толщина теплоизоляционного слоя, м.

 

3.9. Определение сопротивления паропроницанию дополнительного слоя пароизоляции

 

При получении в п. 3.7 результата Р > 0 или в п. 3.8 результата Рк > ΔР в конструкции требуется устройство пароизоляции.

Сопротивление паропроницанию слоя пароизоляции определяется по формуле:

Δ Rvp = R ivp (m - 1), (3.10)

где m – коэффициент, показывающий во сколько раз надо увеличить сопротивление на пути движения влаги к зоне конденсации R ivp .

Коэффициент mрассчитывается следующим образом:

а) при получении в п. 3.7 результата Р > 0 коэффициент mвыбирают таким образом, чтобы выполнилось условие Р = 0.

С учетом этого формула (3.6) примет вид:

1/mРi '+ Рi"= 0

Следовательно,

m = - ∑ Рi ' / Рi" (3.11)

Здесь суммирование проводится по всем периодам года.

б) при получении в п. 3.8 результата Рк > ΔР коэффициент m должен быть таким, чтобы выполнялось условие Рк =Δ Р. Тогда выражение (3.8) примет вид:

1/mРi '+ Рi"= Δ Р

Следовательно,

m = ∑ Рi ' / ( Δ Р - Рi")(3.12)

В данном случае суммирование проводится по тем периодам, когда происходит конденсация влаги в конструкции.

 

При нарушении обоих условий, проверяемых в п.3.7 и п.3.8, сопротивление пароизоляции ΔRvp определяется дважды. Из двух величин Δ R vpпринимается большая.

В качестве пароизоляции употребляются тонкие листовые и рулонные материалы, обладающие малой паропроницаемостью. Дополнительная пароизоляция выбирается по таблице приложения Г.

Следует изобразить эскиз запроектированной ограждающей конструкции с устройством слоя пароизоляции.

 

Предельно допустимые значения коэффициента Dwav

Таблица 3.4

Материал ограждающей конструкции Предельно допустимое приращение расчетного массового отношения влаги в материале Dwav, %
1. Кладка из глиняного кирпича и керамических блоков 1,5
2. Кладка из силикатного кирпича 2,0
3. Легкие бетоны на пористых заполнителях (керамзитобетон, шугизитобетон, перлитобетон, шлакопемзобетон)
4. Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.)
5. Пеногазостекло 1,5
6. Фибролит и арболит цементные 7,5
7. Минераловатные плиты и маты
8. Пенополистирол и пенополиуретан
9. Фенольно-резольный пенопласт
10. Теплоизоляционные засыпки из керамзита, шунгизита, шлака
11. Тяжелый бетон, цементно-песчаный раствор

 







Дата добавления: 2015-08-27; просмотров: 1009. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.044 сек.) русская версия | украинская версия