Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модели транспортной задачи






2.1. Закрытая модель транспортной задачи

Для доказательства теоремы необходимо показать, что при заданных условиях существует хотя бы один план задачи и линейная функция на множестве планов ограничена.

Доказательство. Пусть = M > 0 .

Тогда величины xij
= aibj
/ M (i
= 1,2,3,... m; j
= 1,2,3,..., n) являются планом, так как они удовлетворяют системе ограничений

(2) и (3).

Действительно, подставляя значения в (2) и (3), находим

= ai,

= bj.

Выберем из значений Cij наибольшее C¢ = max

Cij и заменим в линейной функции (1) все коэффициенты на C¢ тогда, учитывая (2), получим

,

Выберем из значений Cij наименьшее C
¢¢
=
min

C ij и заменим в линейной функции все коэффициенты на C
¢¢
;; тогда, учитывая (2) имеем

Объединяя два последних неравенства в одно двойное, окончательно получаем

C
¢¢
M
?

Z
?

C
¢

M,

т. е. линейная функция ограничена на множестве планов транспортной задачи.

 


2.2. Открытая модель транспортной задачи

Транспортная задача, в которой суммарные запасы и потребности не совпадают, т. е. не выполняется условие , называется открытой. Для открытой модели может быть два случая:

a) суммарные запасы превышают суммарные потребности ;

b) суммарные потребности превышают суммарные запасы .

Линейная функция одинакова в обоих случаях, изменяется только вид системы ограничений.

Найти минимальное значение линейной функции

при ограничениях

,i = 1, 2,..., m, (случай а)

, j = 1, 2,..., n;

, i = 1, 2,..., m, (случай б)

, j = 1, 2,..., n,

xij ³
0 (i = 1, 2,..., m; j = 1, 2,..., n).

Открытая модель решается приведением к закрытой модели.

В случае (а), когда суммарные запасы превышают суммарные потребности, вводится фиктивный потребитель Bn+1, потребности которого bn+1 = . В случае (б), когда суммарные потребности превышают суммарные запасы, вводится фиктивный поставщик Am+1, запасы которого am+1 = .

Стоимость перевозки единицы груза как фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика полагают равными нулю, так как груз в обоих случаях не перевозится.

После преобразований задача принимает вид закрытой модели и решается обычном способом. При равных стоимостях перевозки единицы груза от поставщиков к фиктивному потребителю затраты на перевозку груза реальным потребителям минимальны, а фиктивному потребителю будет направлен груз от наименее выгодных поставщиков. То же самое получаем и в отношении фиктивного поставщика.

Прежде чем решать какую-нибудь транспортную задачу, необходимо сначала проверить, к какой модели она принадлежит, и только после этого составить таблицу для ее решения.


3. Определение оптимального и опорного плана транспортной задачи

Как и при решении задачи линейного программирования, симплексным методом, определение оптимального плана транспортной задачи начинают с нахождения какого-нибудь ее опорного плана.

Число переменных Xij в транспортной задаче с m пунктами отправления и n пунктами назначения равно nm, а число уравнений в системах (2) и (3) равно n+m. Так как мы предполагаем, что выполняется условие (5), то число линейно независимых уравнений равно n+m-1 отличных от нуля неизвестных.

Если в опорном плане число отличных от нуля компонентов равно в точности n+m-1, то план является не выраженным, а если меньше - то выраженным.

Для определения опорного плана существует несколько методов. Три из них - метод северно-западного угла, метод минимального элемента и метод аппроксимации Фогеля - рассмотрены ниже.

При составлении первоначального опорного плана методом северо-западного угла стоимость перевозки единицы не учитывается, поэтому построенный план далек от оптимального, получение которого связано с большим объемом вычислительных работ. Обычно рассмотренный метод используется при вычислениях с помощью ЭВМ.

Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.

Для определения оптимального плана транспортной задачи можно использовать изложенные выше методы. Однако ввиду исключительной практической важности этой задачи и специфики ее ограничений [каждое неизвестное входит лишь в два уравнения системы (2) и (3) и коэффициенты при неизвестных равны единице] для определения оптимального плана транспортной задачи разработаны специальные методы. Два из них - метод потенциалов и Венгерский метод - рассматриваются ниже.

7 8 9 10 Метод "северо-западного" угла

Шаг 1. Составляют транспортную таблицу.

Шаг 2.Транспортную таблицу начинают заполнять с левого верхнего (северо-западного) угла. При заполнении двигаются по строке вправо и по столбцу вниз. В клетку, находящуюся на пересечении первой строки и первого столбца, помещается максимально возможное число единиц продукции, разрешенное ограничениями на предложение и спрос: Если а1 < b2, то х11 = a1 и предложение первого поставщика полностью исчерпано. Первая строка вычеркивается, и двигаются по столбцу вниз. В клетку, находящуюся на пересечении первого столбца и второй строки, помещается максимально возможное число единиц продукции, разрешенное ограничениями на предложение и спрос: х21 =
= min(a 2 ,b1-a1). Если b 1 -a 1 <a 2то х 21 = b 1 -a 1. Спрос первого потребителя удовлетворен. Первый столбец вычеркивают и двигаются по второй строке вправо. Заполнив клетку, стоящую на пересечении второй строки и второго столбца, переходят к заполнению следующей третьей клетки второй строки, либо второго столбца. Процесс продолжают до тех пор, пока не исчерпается предложение и не удовлетворится спрос. Последняя заполненная клетка находится в последнем n -м столбце и последней m -й строке.







Дата добавления: 2015-08-27; просмотров: 366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия