Лабораторная работа №8. Применение методов фрактальной геометрии для анализа изображений.
В настоящее время для определения свойств изображений активно применяются математические методы фрактальной геометрии. Это современный раздел математики изучающий свойства объектов с дробной размерностью. Напомним, что в соответствии с Евклидовой геометрией топологическая размерность точки равна нулю, линии – единице, плоскости – двум, пространства – трем. Фракталы это объекты топологические свойства, которых значительно отличаются от классических евклидовых, приведем пример ковра Серпинского см. рис. 8.
Рис. 8. Этапы генерации ковра Серпинского Данное множество получается путем разделения исходной плоскости на девять частей и удаления средней части, после чего для оставшихся элементов процедура повторяется, таким образом мера ковра Серпинского должна равняться нулю, однако очевидно, что вне зависимости от шага итерации на плоскости останутся некоторые белые точки. Из этого примера можно определить основное свойство фракталов – самоподобие. Фрактал есть множество отдельный элемент, которого подобен всему множеству. В случае, когда коэффициенты подобия по различным осям не совпадают, говорят о самоаффиности. Для анализа свойств такого рода объектов было предложено использовать размерность Хаусдорфа-Безиковича.
где
, где
выраженный через функцию Хэвисайда
В отличии от применяемой ранее энтропии Шеннона, данная величина учитывает «сложность» расположения точек изображения различных градаций относи друг друга и позволяет, достаточно надежно определят свойства изображений.
|