Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценки игры





 

Рассмотрим матричную игру, представленную матри­цей выигрышей m×n, где число строк i = , а число столбцов j = (см. табл. 4.1). Применим принцип получения максимального гаран­тированного результата при наихудших условиях. Игрок 1 стремится принять такую стратегию, которая должна обеспечить максимальный проигрыш игрока 2. Соответственно игрок 2 стремится принять страте­гию, обеспечивающую минимальный выигрыш игрока 1. Рассмотрим оба этих подхода.

Подход игрока 1. Он должен получить максимальный гарантирован­ный результат при наихудших условиях. Значит, при выборе своей чис­той стратегии, отвечающей этим условиям, он должен выбрать гаранти­рованный результат в наихудших условиях, т.е. наименьшее значение своего выигрыша aij, которое обозначим

Чтобы этот гарантированный результат в наихудших условиях был максимальным, нужно из всех а, выбрать наибольшее значение. Обо­значим его а и назовем чистой нижней ценой игры (максимин):

Таким образом, максиминной стратегии отвечает строка матицы, которой соответствует элемент α. Какие бы стратегии ни применял иг­рок 2, игрок 1 максиминной чистой стратегией гарантировал себе выиг­рыш, не меньший чем α;. Таково оптимальное поведение игрока 1.

Подход игрока 2. Своими оптимальными стратегиями он стремится уменьшить выигрыш игрока 1, поэтому при каждой j-й чистой страте­гии он отыскивает величину своего максимального проигрыша:

в каждом j -м столбце, т.е. определяет максимальный выигрыш игрока 1, если игрок 2 применит j -ю чистую стратегию. Из всех своих nj -х чистых стратегий он отыскивает такую, при которой игрок 1 получит мини­мальный выигрыш, т.е. определяет чистую верхнюю цену игры (минимакс):

Чистая верхняя цена игры показывает, какой максимальный выиг­рыш может гарантировать игрок 1, применяя свои чистые стратегии, – выигрыш, не меньший, чем α. Игрок 2 за счет указанного выше выбора своих чистых стратегий не допустит, чтобы игрок 1 мог получить выиг­рыш, больший, чем β.

Таким образом, минимаксная стратегия отображается столбцом пла­тежной матрицы, в котором находится элемент β; (см. табл. 4.1). Это оптимальная чистая гарантирующая стратегия игрока 2, если он ничего не знает о действиях игрока 1.

Чистая цена игры – цена данной игры, если нижняя и верхняя ее цены совпадают:

В этом случае игра называется игрой с седловой точкой.

 







Дата добавления: 2015-08-29; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия