Газового хроматографа ЛХМ-8МД
Газовая проба вводится в поток газа – носителя с помощью крана – дозатора 5. Последний обеспечивает постоянство объема пробы (в выполненных работах 0,1212 см3). Перед вводом пробы входной канал крана-дозатора продувается газом- носителем с контролем по барботированию воды в склянке 12. При исследовании состава атмосферы литейной формы (для даль- нейшего расчета её окислительно - восстановительного потенциала) пробы газа из разных точек отбирались с помощью медицинского шприца типа “Рекорд” и вводились в кран-дозатор иглой через резиновую мембрану. На хроматограмме (рис.2), благодаря постоянному объему пробы, мерой объективного содержания компонента является высота пика. Известны и другие конструкции хроматографов, причем в последнее время выпускаются приборы с автоматической дешифровкой параметров пиков хроматограммы с помощью встроенных микропроцессорных устройств.
Рис.2. Примерный вид хроматограммы
Класс точности автоматических газоанализаторов находится в пределах 2... 5. При отборе и хранении пробы металла с целью последующего контроля концентрации растворенных в нем газов (водорода, азота, кислорода) необходимо предотвратить диффузионное выделение в атмосферу и потерю анализируемых газов пробой. Для этого пробы металла немедленно после отбора из ванны плавильной печи или разливочного ковша нужно закалить в деаэрированной воде, а затем хранить в жидком азоте. Известно, что растворимость газа в расплавленных металлах согласно закону Сивертса: [Г] = кг· , где Р 2Г - парциальное давление данного газа над поверхностью металла; кг - константа растворимости, зависящая от природы газа и металла, а также от температуры. Экстракцию газа осуществляют следующими методами: 1) плавлением пробы в вакууме; 2) то же – под током инертного газа; 3) восстановительным плавлением. Первые два из перечисленных методов непосредственно понижают парциальное давление анализируемых газов над металлом, и эти газы выделяются из пробы для последующего их определения соответствующими газоаналитическими детекторами. Из состава последних чаще используются катарометры (по теплопроводности анализируемого газа) и детекторы инфракрасного поглощения. Для разделения компонентов анализируемой газовой смеси применяются сорбционные методы газовой хроматографии. Метод восстановительного плавления пробы в графитовом тигле применяется для определения содержания в металле кислорода. Прочность находящихся в металле оксидов настолько высока, что для их разрушения и экстракции кислорода из пробы требуется нагревание последней до температуры, значительно превышающей 2000˚C. Поскольку это практически недостижимо, кислород выделяют из пробы в составе СО при существенно более никой температуре, благодаря реагированию оксидов металла с углеродом материала тигля по реакции
MemOn+ n C = m Me+ n CO.
При этом непосредственно анализируют СО с дальнейшим пересчетом в концентрацию содержащегося в металле кислорода. Литейная технология предъявляет сравнительно высокие требования к точности определения влажности песчано - глинистых и других формовочных и стержневых смесей. Допустимая погрешность измерения не должна превышать ± 0,5% Н2О. Влага входит в состав формовочных материалов в различных формах. Часть ее адсорбируется на поверхности зёрен материала и удерживается силами поверхностного натяжения. Избыточная влага вызывает скольжение зёрен относительно друг друга под действием внешних сил. Наконец, некоторое количество влаги оказывается химически связанным в форме кристаллогидратов связующих веществ. Наиболее точно влажность можно определить ручным способом путём нагревания и высушивания навески испытуемого материала до постоянной массы. Однако этот метод требует значительной затраты времени (до трех часов). В приборах автоматического контроля влажности преимущественно используются электрические методы измерения (табл. 1). Электрический ток через формовочную (стержневую) смесь определяется выражением I = I сп + I с + I п ,
где I сп – ток сквозной проводимости, обусловленный переносом электрических зарядов (практически – через раствор солей, кислот и оснований в воде); I с – ток смещения, вызываемый поляризацией зарядов частиц формовочного материала как диэлектрика; I п – ток потерь, в результате протекания которого электрическая энергия превращается в тепловую. Таблица 1
|