Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конструктивная реализация способов охлаждения





В зависимости от плотности компоновки РЭС, степени теплонагруженности ее элементов используют различные способы обеспечения заданных тепловых режимов.

Наиболее простыми являются конвективные системы. При естественном воздушном охлаждении герметичных блоков РЭС из-за разной плотности горячего и холодного воздуха происходит его перемешивание.

Рисунок 8.3 – Перемешивание воздуха

Эффективность естественной конвекции может быть увеличена за счет применения отверстий в кожухе, через которые более холодный воздух снаружи будет заходить в блок, а более нагретый - в окружающее пространство.

Рисунок 8.4 – Перемешивание воздуха

Вентиляционные отверстия выполняются в различных вариантах:

 

А) Металлическая сетка Б) Перфорация В) Жалюзи Г) Вентиляционные грибки

Рисунок 7.5 – Варианты перфорации

Принудительное воздушное охлаждение используют для интенсификации теплообмена.

Рисунок 7.6 – Перемешивание воздуха вентилятором

Рисунок 7.7 – Принудительная вентиляция приточного или вытяжного типа

Жидкостные и испарительные системы более эффективны, т.к. у жидкости плотность и теплопроводность значительно больше воздуха.

Элементы установленные в жидкость отдают ей свою тепловую энергию при естественной конвекции или кипении. Жидкости должны быть инертны и нетоксичны: фреон, спирт, этиленгликоль с Т кипения примерно 25°С.

Рисунок 7.8 – Внутреннее перемешивание с кипением

Внутреннее перемешивание жидкости повышает эффект внутреннего теплообмена, а наличие теплообменников - внешнего.

Рисунок 7.9 – Внешнее перемешивание

С помощью кондукции можно довольно простыми конструктивно-компоновочными решениями отвести тепло от греющихся элементов. В миниатюрных блоках это практически единственный способ охлаждения.

Рис. 7.10 – Применение теплообменников или радиаторов

Рисунок 7.11 – Применение теплостока в виде бронзовых плоских пружин или металлического шнура

На эффективность теплоотдачи оказывает влияние шероховатость поверхности, контактное давление (самонарезающие винты), теплопроводность материалов (медь, алюминий), покрытия. Применение пластичных прокладок с большой теплопроводностью (свинцовые, медные, алюминиевые, бронзовые) снижает контактное тепловое сопротивление вдвое, заполнение воздушных прослоек теплопроводящей пастой - в 1,5 раза.

Среди жидкостных систем особое место занимают тепловые трубы, используемые для локального охлаждения.

Рисунок 7.12 – Тепловая трубка

Трубка представляет собой металлический корпус 1, внутри которого пористый фитиль 2, заполненный жидкостью с низкой температурой кипения. При нагреве локального участка трубки жидкость, находящаяся в порах фитиля вблизи этого участка, нагревается тоже; при превышении температуры нагрева выше температуры кипения, жидкость испаряется и пар перемещается внутри к более холодному концу трубы. При охлаждении пар превращается в жидкость и по капиллярам фитиля двигается к нагретому концу трубки. Таким образом, тепло переносится от нагретого конца трубы к холодному.

Подобные трубки применяют для охлаждения больших гибридных ИС (БГИС) внутри РЭС (рисунок 7.13).

Рисунок 7.13 – БГИС с тепловой трубкой

БГИС на поликоровой подложке 2, составленная из бескорпусных приборов на балочных выводах 1, размещается на алюминиевом основании 3, закрепленном на алюминиевой охлаждающей трубке 5 с циркулирующим хладоагентом. Охлаждающая трубка размещена на коммутационной плате 6, на которую же подходят выводы навесными проводниками 4 от БГИС.

Для улучшения теплоотвода от несущих конструкций применяют металлические печатные платы.

1 - алюминиевая плата; 2 - изоляционный слой;

3 - металлизированные отверстия; 4 - печатная схема

Рисунок 8.14 – Металлическая плата

Повышение плотности компоновки приводит к тому, что естественное воздушное охлаждение становится неэффективным. Интенсификация охлаждения достигается увеличением теплоотводящей поверхности - созданием на ней ребер. Ребра выполняются как на кожухе и шасси, так и в виде самостоятельных конструктивных деталей, называемых радиаторами.

Теплоотводящие радиаторы различаются между собой формой ребер и мощностью теплового рассеяния. Наибольшее распространение в РЭС получили радиаторы с ребрами пластинчатой, ребристой, штырьковой, игольчатой форм и спиральной.

Рисунок 7.15 – Пластинчатые радиаторы

Пластинчатые радиаторы изготавливают из стали или алюминия толщиной от 2 до 6 мм. Из-за малой эффективности применяют для небольших мощностей.

Рисунок 7.16 – Ребристые радиаторы

Ребристые радиаторы эффективнее пластинчатых. Изготавливаются из алюминиевых и магниевых сплавов.

Рисунок 7.17 – Штырьковые радиаторы

Штырьковые радиаторы имеют более высокий коэффициент теплообмена, чем ребристые. Изготавливаются литьем под давлением.

Рисунок 7.18 – Игольчатые радиаторы

Игольчатые радиаторы эффективнее штырьковых, но сложнее в изготовлении и дороже.

Рисунок 7.19 – Спиральные радиаторы

Спиральны е радиаторы при одинаковой с игольчатой площадью S имют в 2,5 раза меньший объем и в этом смысле - более эффективны.

Расчет радиаторов сводится к определению их геометрических размеров по заданной мощности теплового рассеивания, максимально допустимом нагреве охлаждаемого элемента и температуре окружающей среды.

Эффективность радиаторов находится в прямой зависимости от количества и размера ребер и их расположения. Минимальная толщина ребра определяется технологическими возможностями литья, а минимальный размер между стенками ребер рекомендуется не менее 4...6 мм для теплообмена. Для улучшения теплового контакта радиаторы устанавливают на алюминиевые, свинцовые, оловянные прокладки, а для электроизоляции - оксидируют контактную поверхность или ставят на прокладки из оксидированного алюминия. Для улучшения турбулентности воздуха ребра покрывают лакокрасочным покрытием.







Дата добавления: 2015-08-29; просмотров: 733. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия