Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрические тела в ортогональных и аксонометрических проекциях.





Многогранники.

Геометрическое тело, ограниченное со всех сторон плоскостями, называется многогранником. К наиболее часто используемым в практике многогранникам относятся призма и пирамида.

а) Рис. 90 б)

Призмой называется многогранник, основаниями которого являются многоугольники, а боковыми гранями - четырехугольники (прямоугольники или параллелограммы). Элементы призмы показаны на рис. 90,а.

Пирамидой называется многогранник, в основании которого лежит многоугольник, а боковые грани являются треугольниками, имеющими общую вершину. Элементы пирамиды показаны на рис. 90,б.

Ортогональные проекции призмы.

Рассмотрим на примере правильной прямой пятиугольной призмы ортогональные проекции ее на три плоскости проекций.

 

Рис. 91

 

Для построения ортогонального чертежа сначала проводят оси координат Ох, Oy, Оz. Затем проводят осевые и центровые линии и строят горизонтальную проекцию призмы. Для построения фронтальной проекции призмы из горизонтальной проекции каждой вершины основания проводят линии проекционной связи параллельно оси Oy до оси Ох. Из точек 1'...5' откладывают высоту призмы. Ребра, проведенные из точек 1, 2 и 5, будут видимыми, а из точек 3 и 4 невидимыми. Для построения профильной проекции призмы надо провести линии проекционной связи от точек 1...5 горизонтальной проекции и высоту призмы перенести с фронтальной проекции.







Дата добавления: 2015-08-29; просмотров: 920. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия