Студопедия — Физический механизм энергообмена
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физический механизм энергообмена






Известно, что нет процессов монотонных, а есть только колебательные процессы. Основной причиной колебаний среды и параметров обменных процессов является запирание, экранирование, меньшего потенциала средой, пришедшей от большего потенциала.

Движущей силой любого обменного процесса является разность потенциалов или концентраций вещества и энергии. Порция вещества, пришедшая от большей концентрации в зону с меньшей концентрацией увеличивает концентрацию в ней (локально) и тем самым уменьшает разность концентраций (движущую силу процесса) так, что обмен прекращается. Затем происходит выравнивание потенциала в локальной зоне путем диффузии и других взаимодействий пришедшей порции с окружающей средой. Уменьшение потенциала снова создает условия (наличие движущей силы равно разности потенциалов) для движения новой порции среды от большей концентрации к меньшей, то есть – начала новой фазы колебательного процесса.

Применительно к тепломассообмену при испарении и конденсации жидкости этот физический механизм был описан и изучен в /6/. Измерения колебания температуры в пограничном слое воздуха при испарении воды с ее поверхности при комнатной температуре и давлении показали, что частота колебаний составляет 1/8 Гц, то есть – одно колебание за 8 секунд.

Надо еще учесть, что импульсное движение любой среды всегда сопровождается разгоном звуковой волны в ней от начальной скорости импульса до скорости звука и движением волны между границами зоны с большим и меньшим потенциалами. То есть обменное движение порции среды тоже не бывает монотонным, а сопровождается звуковой волной, движущейся со скоростью звука, что значительно превосходит скорость потока самой порции и имеет ударный, взрывной, характер с повышенным давлением на фронте волны и разрежением за ним (обратной волной). Этот фактор (волна) усиливает колебания среды в обменном процессе.

Электринный газ (эфир) как совокупность мелких элементарных частиц – электрино, имеющих положительный электрический заряд, распространен в любом веществе – твердом, жидком, газообразном, а также – в космосе. Как в любой среде, в эфире также происходят обменные процессы по общим правилам природы: от большей концентрации (потенциала) к меньшей; импульсно; импульс сопровождается звуковой или ударной (взрывной) волной. Надо обратить внимание, что скорости движения электрино (до 1030 м/с) и тем более их звуковые скорости на десятки порядков больше скоростей среды и звука в веществе. Поэтому обменные процессы в эфире более могучие, например, молния, которая сопровождается световым излучением (скорость света ~3×108 м/с) и акустическим излучением (скорость звука ~3×102 м/с), а также перетоком электрино в электрическом разряде с указанной выше скоростью, ударной и звуковой волной со скоростью близкой к бесконечности.

Рассмотрим физический механизм энергообмена между электрическим проводником и окружающей средой. Это один из важнейших процессов, в результате которого обеспечивается генерация электрической энергии за счет ее подкачки из окружающей среды, которым занимались Тесла и многие другие исследователи – новаторы, но который так и не нашел объяснения и применения до сего времени в промышленных энергоустановках. Не нашел применения именно из-за того, что был неизвестен физический механизм энергообмена проводника с окружающей средой, а формальные теории (резонансных контуров и т.д.) не дают должной информации не только для конструирования промышленных энергоустановок, но и для постановки исчерпывающих научных исследований как теоретических, так и экспериментальных.

Конечно, когда проводник обесточен и не подвергается никаким другим воздействиям, то никакого энергообмена с генерацией электрического тока в нем нет, хотя энергообмен (без генерации), как и всякого вещества, с окружающей средой есть. Он описан в главе «Основа жизни и работы энергоустановок». В проводнике без электрического тока всегда есть стоячий вихрь электрино, обращающихся вокруг проводника. Он вызван отрицательным избыточным зарядом металла, притягивающим частицы – электрино противоположного заряда. Но они не падают на него, так как, приблизившись встречают поля положительного заряда вещества металла, которые занимают 99,9% площади поверхности проводника, и, в силу отталкивания одноименных зарядов, заставляют электрино зависать на некоторой высоте над поверхностью проводника в положении неустойчивого равновесия, которое от внешнего асимметричного влияния нарушается, и электрино начинает вращаться вокруг проводника. Колебания атомов кристаллической решетки вещества проводника и колебания вихрей электрино вокруг атомов, поддерживающих энергией атомы и кристаллы в целом путем энергообмена с окружающей средой, как описано в /2/, сопровождаются перетоком электрино и волн эфира из окружающей среды в проводник и обратно.

В проводнике с переменным электрическим током создаются дополнительные условия, а именно:

1) разность потенциалов для поступательного движения тока (вихря электрино) вдоль проводника;

2) повышенное напряжение (концентрация электрино в вихре);

3) отбор части электрино потребителем энергии;

4) возврат оставшейся части электрино к генератору;

5) рассеяние электрино путем столкновительного взаимодействия на проводнике (электрическое сопротивление) и на потребителе (потребляемая мощность);

6) периоды времени с нулевым значением тока при перемене его направления (пересечение оси синусоидой тока) или при прекращении импульса, если ток импульсный.

Последнее условие является решающим для обеспечения подкачки энергией из окружающего пространства с электринным газом. При нулевой концентрации тока на проводнике по условию 6 из окружающей среды под действием движущей силы (разности концентраций электрино, равной разности потенциалов) порция электрино отправляется от большей концентрации к меньшей, к проводнику, и образует вокруг него стоячий вихрь, который потом соединяется с первичным током. Это и есть подкачка энергией проводника с током из окружающей среды.

Как видно, подкачка есть при любой частоте первичного тока, в том числе, при промышленной частоте 50 Гц, но она настолько незначительна, что не ощущается практически. Назовем ток подкачки вторичным, так как он накладывается на первичный и без него не бывает. Даже в краткий период времени около нулевой концентрации электрино на проводнике вторичный ток не является постоянным, монотонным. За первой порцией электрино из окружающего пространства следует вторая, третья… миллионная и т.д., наполняя стоячий вихрь частицами – электрино импульсно, многократной подкачкой за малый промежуток времени. То есть вторичный ток является высокочастотным, и его частота ω и есть собственная частота электрического контура, которая зависит от его электрических параметров. Традиционно собственную частоту определяют как из условий равенства реактивных сопротивлений. Однако, например, при L → 0 частота стремится к бесконечности при индуктивном сопротивлении ωL→0, хотя емкостное сопротивление не равно нулю , как этого требует традиционная формула.

С каждой порцией электрино идет эфирная звуковая или ударная волна, способствующая энергообмену.

С повышением собственной частоты контура существенно увеличивается количество периодов времени с нулевым потенциалом на проводнике. По сравнению с промышленной частотой увеличение количества подкачек энергии возрастает для мегагерцев, соответственно, на 6 порядков; для гигагерцев – на 9 порядков; для терагерцев – на 12 порядков. Это очень большое увеличение энергии. Эти частоты называют резонансными, в том смысле, что их можно получить при совпадении частоты задатчика тока (импульсного генератора или электрической сети) с собственной частотой контура. Последняя подстраивается изменением индуктивности и емкости электрической цепи. При резонансных частотах наблюдается наибольшие амплитуды тока и (или) напряжения, которые могут превышать амплитуды первичного тока (напряжения) задатчика. Это и есть процесс подкачки энергии из окружающей среды. Изъятие из среды энергичных электрино и эквивалентный выброс «обессиленных» электрино понижает температуру окружающей среды (воздуха), по данным информационных источников, на 8…200С. Этот недостаток энергии (тепла, температуры) впоследствии восполняется самой средой, в конечном итоге, за счет притока нейтрино (скоростные электрино) от Солнца.







Дата добавления: 2015-08-17; просмотров: 566. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия