Статистическая (Гауссова) теория переноса примесей.
В настоящее время статистической теории атмосферной диффузии посвящено значительное количество исследований. Эта теория отслеживает движение самих частиц ЗВ и использует лагранжев метод описания среды. При лагранжевой формулировке задачи система координат движется вместе с переносящим примеси ветром. Теория широко использует результаты и методы теории вероятностей. Первые фундаментальные результаты, оказавшие большое влияние на все теоретические и экспериментальные работы в дальнейшем, в рамках статистической теории турбулентной диффузии, были получены Тейлором (1921). Выводы Тейлора относились к одномерной диффузии в стационарном и однородном потоке. Он рассматривал непрерывное блуждание частицы ЗВ при устойчивом среднем ветре. Основное уравнение, полученное Тейлором для диффузии относительно фиксированного начала координат, учитывает дисперсию σ x(t), выраженную через корреляционную функцию: (7.8) где и ' - стандартное отклонение поперечных пульсаций скорости, м/с; t - время распространения факела от источника до рассматриваемой точки, с; Rx(ξ) - одноточечная нормированная лагранжева автокорреляционная функция поперечных пульсаций, м/с. Формула Тейлора (7.8) описывает статистическое движение одной частицы ЗВ. Дальнейший вклад в разработку статистической теории внесли Паскуилл и Хей, которые в своих работах показали, что на факел выброса ЗВ в первый момент времени воздействуют только мелкие вихри, а одноточечная лагранжева корреляционная функция Rx(ξ) определяется зависимостью: (7.9) подстановка которой в формулу Тейлора (7.8) дает возможность получить простую интерполяционную формулу: (7.10) где ν;– кинематическая вязкость воздуха, п - параметр Сеттона, определяющий устойчивость атмосферы. Уравнение (7.10) является основным уравнением диффузионной модели Сеттона. На его основе получены формулы для определения концентрации загрязняющих веществ, соответствующие основным типам источников. Формулы Сеттона оказались весьма удобными для описания экспериментальных данных и получили широкое распространение как основа для расчетов диффузии загрязнения на практике. Модель Сеттона находит подтверждение для расстояний от источника порядка нескольких километров при нейтральном и неустойчивом состояниях атмосферы. Модели теории статистической диффузии не учитывают конкретные свойства диффундирующей примеси. Это затрудняет, в свою очередь, изучение диффузии различных видов загрязняющих веществ, физические и химические свойства которых могут существенно влиять на процесс рассеивания.
|