Пример использования программы Typology Tables
В информации RLMS сведения о покупках 3700 семей, сделанных в течение 1 недели (молочных продуктов, спиртного и табака, сладостей и другого), о размерах жилья и имеющихся в жилье удобствах, о наличии в семье дорогостоящих предметов и недвижимости. Связаны ли ответы о покупках спиртного и табака с наличием автомобиля, дачи и других предметов крупной собственности? Этот вопрос мы проанализируем с помощью Typology Tables. Таблица 3.10, полученная по совокупности городских семей (подвыборка из RLMS 2604 семей), показывает такую связь. В таблице строки соответствуют ответам по одному, столбцы - ответам по другому вопросу, отличие от обычной таблицы частот только в том, что группы объектов (семей), соответствующие разным ответам, могут пересекаться. Явно видно, что в семьях, владеющих крупной собственностью, употребляют больше алкоголя и табака (может быть, сказывается наличие в них большего числа мужчин?). Однако, насколько надежен этот вывод? Особенно для группы владельцев грузового автомобиля - уж слишком мала эта группа для надежных выводов. Таблица 3.10. Покупка алкоголя и табачных изделий и наличие крупной собственности (фрагмент таблицы сопряженности, частоты и % по строкам)
Z -статистики в таблице 3.11 показывают значимость связей некоторых ответов. Однако множественные сравнения не позволяют полностью доверять этим результатам. Таблица 3.11. Z-статистики и значимость (%) связи покупки алкоголя и табачных изделий и наличие крупной собственности (фрагмент таблицы, Z-статистики) В таблице 3.12 отмечены значимые с точки зрения множественнях сравнений Z -статистики. При этом оценка 5% критического значения Z равна 3.09, а не 1.96, как это было бы в обычном анализе. В каждой клетке расположены также наблюдаемые множественные значимости. Например, Z статистика 6.46 в клетке "Легковой автомобиль - пиво" практически не может быть получена случайно (вероятность получить большее значение равна нулю), а связь, характеризуемая значением Z=2.84 в клетке "Другая квартира - водка" - под сомнением: такие и большие значения в одной из 28 клеток таблицы можно получить случайно с вероятностью 10.8%. Таблица 3.12. Z-статистики отклонений частот и их наблюдаемая множественная значимость (в %, 5% критическое значение max|Zij|= 3.09). Таблица средних. Молочные продукты и жилплощадь. Некоторые товары настолько общеупотребительны, что их покупает каждая семья, другие - чаще приобретаются семьями с детьми, третьи товары берут для стариков и т.п. Молодые семьи обычно имеют маленьких детей и часто нуждаются в жилплощади. Можно ли по косвенному признаку, жилплощади, выяснить, какие молочные товары приобретаются семьей? Для исследования подобных вопросов в клетках таблицы для неальтернативных вопросов размещаются средние значения количественной переменной. В таблице 3.13. размещена средняя жилплощадь в пересекающихся группах семей по покупкам молочных продуктов. Эта таблица показывает, что городские семьи, покупающие кисломолочные продукты, имеют в среднем меньшую, а семьи, покупающие сухое молоко, большую жилплощадь. Но может быть это не закономерность, а игра случая? Таблица 3.13. Средняя жилплощадь в группах семей по покупкам молочных продуктов. Узнать это, определить, какое смещение значимо, а какое - нет, помогут множественные сравнения Z -статистик отклонения средних в клетках от среднего по всей совокупности (см. таблицу 5). В ней выделена единственная значимая на 5% уровне клетка, показывающая относительно малую обеспеченность жилплощадью покупателей кисломолочных продуктов (скорее всего, эти покупатели - из молодых семей с детьми). Абсолютная величина ее значения (- 2.87)случайно может быть перекрыта лишь с вероятностью 0.029 (наблюдаемая множественная значимость равна 2.9%). Таблица 3.14. Z-статистики отклонений средних для таблицы 4 (5% множественное критическое значение равно 2.69).
|