Понятие обобщенного вектора.
Большинство электрических машин переменного тока предназначено для работы в трехфазных сетях, поэтому они строятся с симметричными трехфазными обмотками на статоре, причем МДС этих обмоток распределены в пространстве по закону близкому к синусоидальному, т.е. МДС, создаваемая k -й обмоткой в точке, отстоящей от оси этой обмотке на угол a k равна – Fa k = Fk 0cosa k, где Fk 0– МДС, соответствующая оси k -й обмотки. Синусоидальность распределения позволяет представить МДС или пропорциональные им токи обобщенным пространственным вектором на комплексной плоскости, т.е. вектором, представляющим собой геометрическую сумму отрезков, построенных на пространственных осях фазных обмоток и соответствующих мгновенным значениям фазных МДС или токов. При этом проекции обобщенного вектора на оси фазных обмоток в любой момент времени будут соответствовать мгновенным значениям соответствующих величин. При симметричной трехфазной системе обмоток обобщенный вектор тока можно представить в виде
где
Если статор машины имеет нулевой провод, то фазные токи могут содержать нулевую составляющую и их значения можно представить в виде ia + i o, ib + i o и ic + i o. Тогда вектор тока будет равен Таким образом, обобщенный вектор тока статора не содержит нулевой составляющей и ее при анализе следует учитывать особо. Обобщенный вектор, как и любой вектор на комплексной плоскости, можно представить алгебраической формой записи комплексного числа. Обычно это делают, совмещая вещественную ось с осью обмотки a (рис. 1.1), тогда
Подставляя в выражение (1.1.1) значения операторов поворота, записанные в алгебраической форме, и разделяя вещественную и мнимую части получим Если фазные токи содержат нулевую составляющую, то ее значение будет равно
Отсюда обратное преобразование координат обобщенного вектора –
При этом следует заметить, что на угол J (xy) не накладывается никаких ограничений, т.е. он может иметь постоянное значение, но может также изменяться произвольным образом. Для системы координат вращающейся с постоянной угловой частотой w (xy) он равен – J (xy) = w (xy) t. Преобразование координат можно записать в развернутом виде следующим образом
Отсюда можно найти составляющие вектора ix и iy. или в матричной форме
а также обратное преобразование
Преобразование координат можно осуществить не только от неподвижной системы к вращающейся, но и для двух систем координат, вращающихся с различными угловыми частотами. Пусть вектор i представлен в системе координат d-q, текущий угол которой относительно неподвижных координат составляет J (dq) (рис. 1.2 б). Тогда из очевидных соотношений углов преобразование координат можно записать в виде
Обобщенными векторами можно представить также напряжения u и потокосцепления y, при этом все свойства рассмотренного выше обобщенного вектора тока будут присущи и этим векторам.
|