Непрямі доведення
Зведення до абсурду. Цей метод полягає в тому, що в теоремі А В припускають, що правильним буде . Якщо в результаті цього припущення приходять до неправильного висновку, абсурду, то роблять висновок, що наслідок В теореми А В правильний. Цим способом доводять, наприклад, таку теорему: Якщо дві різні прямі а і b паралельні третій прямій с, то вони паралельні між собою. Припустимо , тобто а і b не паралельні. Тоді вони перетинаються в якійсь точці К, яка не належить с. Дістанемо, що через точку К поза прямою с можна провести дві прямі а і b, які паралельні с, а це суперечить аксіомі паралельності, тобто є хибним твердженням. Отже, правильним твердженням є В. Метод від супротивного. Цей спосіб ґрунтується на законі контрапозиції А В = . Теорема: Довести, що коли аb – непарне число, то обидва множники а і b – непарні цілі числа. Позначимо А: «добуток аb – непарне число», Т: «а – непарне число», S: «b – непарне число». Тоді теорема скорочено запишеться так: A S T, або А В, де В «S T». Припустимо, що = = , тобто один із множників а або b є парним числом. Нехай, наприклад, а – парне, тобто а = 2 m, m Z. Тоді ab = 2mb – парне число, тоді дістали . Таким чином довели теорему , а цим самим і дану теорему А В. Поширеним прикладом неправильних міркувань є непродумане використання неповної індукції, коли загальний висновок зроблено на основі окремих спостережень, експериментів, розгляду скінченної кількості їх. Використання неповної індукції може привести як до правильних, так і неправильних висновків. Так, побудувавши кілька графіків лінійних рівнянь з двома змінними в прямокутній системі координат і побачивши, що вони є прямими лініями, робимо висновок, що графік кожного лінійного рівняння з двома змінними є пряма лінія. Цей умовивід – правильний. Прикладом, коли неповна індукція приводить до хибного результату є теорема Ферма. Ще у XVII ст. математик П. Ферма (1601 – 1665) помітив, що числа виду Fn =22n+1 при n = 0, 1, 2, 3, 4 – прості: F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. Ферма висловив припущення, що при будь-якому n N числа такого виду є простими (їх стали називати простими числами Ферма). Ця гіпотеза була висловлена на основі кількох обчислювальних експериментів. У 1732 р. видатний математик Л. Ейлер (1707 – 1783) показав, що при n = 5 F5 = 4294967297 = 641 ∙ 6700417, тобто F5 не є простим числом. Цей контрприклад спростував гіпотезу Ферма.
|