Отягощение
В принципе чем больший груз поднимают мышцы, тем большее напряжение они развивают. Последнее достигается за счет усиления эффекторной стимуляции и включения в работу большего количества функциональных элементов мышц. Эффективность развития силы путем отягощения движения была показана еще в 500 году до н. э. легендарным Милоном из Кротона. Согласно легенде, он добился огромного увеличения силы тем, что каждый день носил на плечах молодого бычка. По мере того как рос бычок, росла и сила Милона. В наше время идея Милона воплощена в методе прогрессивно возрастающего сопротивления, который был предложен Де Лормом (Th. De Lorme, 1945, 1946; Th. De Lorme, A. Watkins, 1948, 1951; Th. De Lorme a. o., 1952). Суть метода заключается в развитии силы путем повторного поднимания груза, вес которого постепенно увеличивается как в отдельном занятии, так и от занятия к занятию по мере роста силы. Однако в том случае, когда требовалось проявление большой силы, отягощение было естественным и не вызывающим сомнения средством тренировки, то там, где решающую роль играла быстрота движения, им пользовались вначале весьма осторожно. Правда, отдельные авторы отмечали, что тренировка силы с помощью отягощении дает возможность повысить результат в упражнениях скоростного характера (Г. А. Дюпперон, 1926-Л. Д. Любимов, 1927; А. Курье, 1937; Д. П. Марков,1938; Н, Г. Озолин, 1939; Е. Chui, 1950; W. Gullwer, 1955;D. Pennybaker, 1961). Однако потребовалась длительная экспериментальная и практическая проверка, пока это предположение получило подтверждение. В наше время если вопрос о применении отягощении для развития быстроты движений еще и дискутируется, то только в связи с весом отягощения, характером выполнения движений, их темпов, числом повторений и т. п. При использовании отягощения для стимуляции мышечного напряжения необходимо учитывать следующие основные положения. Прежде всего сила в упражнениях с отягощением может проявиться в форме максимального напряжения или наибольшей скорости сокращения работающих мышц. Отсюда принято говорить о собственно-силовых упражнениях, в которых сила проявляется преимущественно за счет увеличения веса перемещаемого груза, и скоростно-силовых упражнениях, в которых проявление силы связано с увеличением быстроты движений (В. С. Фарфель, 1940). В первом случае следует стремиться к работе с возможно большим отягощением, во втором — применять отягощение, оптимальная величина которого определяется требуемой скоростью движения. Следует подчеркнуть, что режим работы организма при выполнении силовых (преимущественно медленных) упражнений и скоростно-силовых (которым присуща быстрота движений) существенно различен как по физиологическому механизму, так и по характеру утилизации энергетических ресурсов. Полагают, что для осуществления быстрых, взрывных движений требуется достаточная подвижность основных нервных процессов при высокой степени концентрации их во времени; при выполнении же медленных движений основная роль нервной системы заключается в том, чтобы создать достаточно сильный очаг возбуждения и поддерживать его относительно длительное время (В. Л. Федоров, 1957). В интересах дальнейшего изложения следует более подробно остановиться на динамических характеристиках движения с предельным усилием в связи с величиной перемещаемого отягощения и режимом работы мышц. Рис.4 Изменение максимума силы (Ртах), времени движения (<), коэффициента реактивности (Я) и мощности работы (N) при выпрыгивании со штангой увеличивающегося веса на плечах (в процентах от максимального)
Факт увеличения значений мощности и коэффициента реактивности при увеличивающемся времени движения может быть объяснен дополнительным потенциалом напряжения, накапливающимся в мышцах за счет поглощения кинетической энергии тела и снаряда в фазе амортизации. В пользу такого вывода свидетельствуют наблюдения характеристик движения, в котором увеличивающееся отягощение (20, 40, 60, 80% от максимума) поднимали за счет разгибания ноги в положении сидя с исходным углом в коленном суставе 110-й, т. е. только при преодолевающей работе мышц (рис.5). Из графиков видно, что с ростом отягощения максимум динамической силы и время движения возрастают аналогично тому, как это было при выпрыгивании со штангой на плечах, однако отсутствие избыточного потенциала напряжения в этом случае приводит к прогрессивному снижению мощности движения. Рис.5 Изменение максимума силы (Fmut), мощности работы [N) и времени движения (Q при отталкивающем движении ногой в положении сидя с преодолением, увеличивающегося отягощения. К этому следует добавить, что вес отягощения, скорость его перемещения и длительность работы с ним определенным образом влияют на состав мышц, участвующих в обеспечении движения, координацию их деятельности и момент выхода из работы. При многократных повторных подъемах штанги наиболее стабильным признаком координационной структуры мышечной деятельности является последовательность включения в работу основных, осуществляющих данное движение, мышц. При подъеме веса 60% от максимального постоянство включения мышц в работу во время эксперимента наблюдалось у всех спортсменов в 82% случаев. При подъеме веса 80% от максимального степень стереотипии была меньшей, носила индивидуальный характер и была выше у квалифицированных спортсменов. В связи с утомлением координационная структура мышечной деятельности нарушалась (В. Г. Пахомов, 1967). В процессе повторной работы состав работающих мышц может изменяться (А. М. Лазарева, 1966, И. М. Козлов, 1966). Может уменьшаться (Ю. В. Мойкин, 1964) или увеличиваться (В. С. Аверьянов, 1963) число мышечных групп, принимающих участие в обеспечении движения. В движениях, выполняемых с малым усилием или с невысокой скоростью, большую часть работы берут на себя мышцы дистальных звеньев тела (К. С. Точилов, 1946; С. А. Косилов, 1948; М. И. Виноградов, 1951). Для движений, связанных с преодолением значительного сопротивления или выполняемых с большой скоростью, характерно переключение активности на мышцы проксимальных звеньев. Таким образом, факторы, о которых шла речь, являются чрезвычайно важными, поскольку влияют как на рабочий эффект движения, так и на специфичность тренируемой силы. Поэтому при подборе силовых упражнений с отягощением эти факторы следует учитывать сообразно особенностям конкретной спортивной деятельности. Следующая отличительная черта упражнений с отягощениями, которую необходимо иметь в виду, связана с начальным моментом развития усилия. Например, в приседаниях или выпрыгиваниях со штангой на плечах в исходном положении, т. е. перед началом активного рабочего усилия, мышцы ног и туловища уже развивают напряжение, равное весу удерживаемого снаряда. В то же время при рывке или толчке штанги основное рабочее усилие, сообщающее ускорение снаряду, развивается практически от нуля. Таким образом, можно выделить две группы упражнений с отягощением: упражнения, в которых рабочее усилие развивается после предварительного напряжения мышц, равного весу снаряда, и упражнения, в которых рабочее усилие развивается от нуля, без существенного предварительного напряжения мышц. Принципиальное различие между этими группами упражнений, на которое здесь впервые обращается внимание, заключается в том, что в первой группе упражнений тренировка не оказывает существенного влияния на процессы, связанные с химическими и физическими превращениями в мышцах в цепи возбуждение—напряжение. Следовательно, в зависимости от применяемого отягощения здесь создаются условия главным образом для развития абсолютной силы мышц или скорости их рабочего сокращения, но не быстроты перехода их в деятельное состояние. Условия же работы мышц во второй группе упражнений содержат в себе одновременно возможность для развития динамической силы, быстроты движения и, главное, стартовой силы мышц. Нетрудно видеть, что рассмотренное положение—не просто нюанс биодинамики движения. Оно имеет существенное значение для совершенствования методики силовой подготовки. Наконец, по условиям приложения силы следует различать упражнения, в которых сила направлена против веса груза, и упражнения, в которых сила направлена против инерции груза. В первом случае, например при поднимании штанги, рабочая сила движения численно равна F=m(a+g), т. е. определяется массой груза и ускорением свободного падения. Во втором случае сила движения равна F=na, т. е. зависит только от инертного сопротивления груза, перемещаемого с некоторым ускорением. Такие условия характерны в принципе, например, для метания (толкания) снаряда, отталкивания от колодок в спринтерском беге, удара в боксе, т. е. для тех случаев, когда сила действует перпендикулярно направлению силы тяжести перемещаемого груза. Разница в биомеханике движения в рассмотренных случаях довольно значительна. В первом сила тяги мышц сначала достигает величины веса отягощения (т. е. практически развивается в изометрических условиях), затем превышает ее (начинается движение), сообщая снаряду ускорение, причем тем большее, чем больше ее превышение над весом снаряда. Предварительное напряжение мышц в условиях изометрического режима обусловливает больший градиент ускоряющей силы. Во втором случае, если не учитывать трения и сопротивления среды, движение перемещаемого груза начинается в принципе при самых незначительных величинах внешней силы. Дальнейшее изменение последней обусловлено целиком скоростью мышечного сокращения или, точнее, способностью мышц “догонять” уходящий груз, проявляя одновременно максимум силы и быстроты сокращения. Иными словами, чем выше способность мышц к быстроте сокращения, тем большую силу они способны проявить. Следовательно, условия, при которых сила мышц направлена против веса груза, стимулируют преимущественно силовой компонент движения, а условия, при которых сила мышц направлена против силы инерции груза, в большей мере стимулируют скорость сокращения мышц. Таким образом, во втором случае нетрудно видеть возможности для преодоления диалектического противоречия между весом отягощения и скоростью сокращения мышц. К сожалению, условия, соответствующие работе мышц против инерции груза, еще не нашли применения в практике спортивной тренировки, что связано с необходимостью специального оборудования. Однако стремление к рационализации методики специальной силовой подготовки заставит в конце концов серьезно об этом подумать. Практически здесь возможны два конструктивных решения: приложение силы (например, отталкивания) к горизонтально катящемуся (скользящему) или подвешенному (по принципу маятника) грузу или раскручивание махового колеса (рис. 49). При первом решении скорость сокращения мышц можно варьировать весом груза, при втором — изменением момента инерции вращения маховика. Работу с отягощением следует рассматривать как частный случай широко применяемого в практике методического приема намеренного затруднения движения с целью развития тех или иных качественных характеристик моторных способностей. Как средство затруднения движения часто используются резиновые амортизаторы (бинты, трубки, жгуты), хотя характер проявления усилия, обусловленный эластическими свойствами резины, ограничивает область применения этого средства. Поэтому для развития стартовой силы в движениях баллистического и взрывного типа использование резины нецелесообразно. Иное дело, если речь идет о развитии силовой выносливости. В этом случае можно так подобрать длину и упругость резины, чтобы ее сопротивление незначительно изменялось в пределах рабочей амплитуды движений. Таким приемом пользуются, например, пловцы для развития силовой выносливости в гребковых движениях (рис. 50). Способы затруднения движений чрезвычайно разнообразны. В каждом конкретном случае они определяются условиями выполнения движения и решают преимущественно две задачи: стимуляцию силы тяги мышц и создание эффекта облегченности при переходе к естественным условиям движения (например, толкание нормального ядра после утяжеленного создает впечатление его легкости). Движение может быть затруднено за счет небольшого отягощения, незначительно увеличивающего вес тела в целом или его отдельных звеньев. Практически это решается с помощью поясов, жилетов, манжет, мешков с песком, обуви и т. п. Эффект затруднения достигается также при беге в гору, по глубокому снегу или воде, при утяжелении хода лодки с помощью гидротормоза и др. Подводя итог рассмотрению принципа стимуляции нервно-мышечного аппарата с помощью отягощения и опираясь на факты, изложенные в предыдущих главах, следует сформулировать ортодоксальное на первый взгляд заключение. Упражнения с отягощением не могут быть адекватным средством для развития быстроты движений (если говорить о быстроте неотягощенного движения или движения против относительно небольшого внешнего сопротивления), особенно для спортсменов высокой квалификации. Внимательный анализ экспериментальных и эмпирических данных свидетельствует о том, что повышение скорости движений за счет упражнений с отягощением, т. е. за счет абсолютной силы мышц, характерно главным образом для начинающих спортсменов. И это вполне справедливо, ибо прибавка в силе мышц на чисто физической основе способствует более быстрой реализации движения. Однако этот фактор очень скоро исчерпывает себя и из положительного превращается в отрицательный, ибо упражнения с отягощением не только способствуют совершенствованию физиологических механизмов, ответственных за быстроту реализации движения, но губительно действуют на них. Если говорить о скоростно-силовых движениях с взрывным характером развития усилия, связанным с преодолением значительного внешнего сопротивления, то здесь упражнения с отягощением, безусловно, полезны” однако лишь в том случае, если они выполняются в определенном, специфическом для специализируемого упражнения режиме работы мышц, при разумном объеме и йа определенных этапах тренировки. Представим, что тренировочный снаряд, скажем штанга, имеет какую-то скорость, полученную, например, в. результате падения с некоторой высоты, и задача спортсмена заключается в том, чтобы сначала активным усилием остановить ее падение, а затем быстро оттолкнуть в противоположном направлении, т. е. вверх (рис. 51). В подобных условиях средняя суммарная величина рабочей силы тяги мышц развивается при уступающей Рис. 51. Отталкивание штанги после падения ее с некоторой высоты Принципиальная в смысле мышечной динамики особенность такого движения заключается в том, что в фазе амортизации кинетическая энергия снаряда трансформируется в некоторый потенциал напряжения мышц, который затем используется в качестве силовой добавки при отталкивающей работе. В принципе величина этого потенциала равна кинетической энергии снаряда в конце его падения (зависит от веса и высоты падения), а абсолютная сила тяги мышц, развивающаяся в момент переключения от уступающей работы к преодолевающей, будет тем больше, чем меньше амортизационный путь и время торможения. Естественно, что рассмотренные условия соответствуют такому случаю, когда действие в целом по своей двигательной установке преимущественно ориентировано на максимально быстрое отталкивание снаряда сразу же после его торможения. Таким образом, речь идет о совершенно отличном от традиционных принципе стимуляции напряжения мышц, при котором в качестве внешнего механического раздражителя выступает не столько вес отягощения (и его инертное сопротивление), сколько энергия, накопленная последним при свободном падении. Рис. 52. Динамика развития усилия при различных вариантах прыжка вверх: выпрыгивание из низкого приседа (1), обычный прыжок с амортизацией (2), после прыжка в глубину с высоты 0,4 м (3). Высота взлета соответственно равна 0,67, 0,74 rf 0,80 м. На оси координат — значение веса испытуемого мортизирующей и затем при активной отталкивающей работе, т. е. имеет место: Если обратиться к динамике работы мышц, например, при различных вариантах отталкивания вверх двумя ногами с максимальным усилием (рис. 52), то нетрудно убедиться в значительных преимуществах такого способа стимуляции мышечного напряжения. Во-первых, он обеспечивает очень быстрое развитие максимума динамического усилия. Во-вторых, величина этого максимума значительно больше, чем в других случаях. В-третьих (и это следует подчеркнуть), большая величина максимума силы достигается без использования дополнительного отягощения. В-четвертых, переключение мышц от уступающей работы к преодолевающей происходит намного быстрее, чем в других случаях. И, наконец, в-пятых, значительный потенциал напряжения мышц, накопленный в фазе амортизации, и отсутствие дополнительного отягощения тела обеспечивают более мощную работу мышц в фазе отталкивания и большую скорость их сокращения, о чем можно судить по большей высоте взлета тела после отталкивания. Таким образом, стимуляция мышечного напряжения путем поглощения энергии падения тела спортсмена или тренировочного снаряда может обеспечить значительную величину силы (что невозможно при других способах механической стимуляции) без применения отягощения или с небольшим весом отягощения и не только без замедления скорости сокращения мышц, но даже с увеличением ее по сравнению с обычными условиями. Нетрудно видеть здесь еще большие возможности для преодоления рокового противоречия между внешним сопротивлением и скоростью движения, чем в рассмотренном ранее случае, когда сила мышц действует против силы инерции преодолеваемого отягощения. Первые экспериментальные шаги в изучении особенностей рассматриваемого принципа стимуляции мышц выявили его исключительную эффективность для развития взрывной силы, и главным образом такого ее компонента, как стартовая сила мышц. Существует предел возможностей развития стартовой силы, обусловленный способностью человека к той или иной степени концентрации волевого усилия, в связи с чем процесс тренировки этой силы протекает весьма медленно. Требуются особые, стрессовые, условия, раздражитель такой силы, который способен обеспечить соответствующие приспособительные реакции нервно-мышечного аппарата. Однако, как правило, распространенные в практике силовые упражнения с отягощением не отвечают этим требованиям хотя бы потому, что элемент включения мышц в активное состояние (т. е. направленное воздействие на фазу развития усилия от нуля) в большинстве из них отсутствует. Вместе с тем ряд исследований наводит на мысль, что такие условия могут иметь место, если, например, резко, толчками растягивать напряженную мышцу (R. Ramsey, 1944; A. Hill, 1955; A. Tweit а. о., 1963), что, собственно, и происходит в момент торможения падения тела или снаряда. Следует подчеркнуть, что значительное и мгновенно развиваемое напряжение мышц в данном случае является следствием экстренной мобилизации скрытых моторных ресурсов двигательного аппарата — это и обеспечивает условия для направленного развития стартовой силы и взрывных способностей мышц. Величина кинетической энергии (Wfe ==-""—) определяется, как известно, весом тела и высотой его падения. Поэтому в методических интересах важно знать, как изменяется стимулирующее влияние энергии при изменении того и другого. Для этого в лабораторных условиях на специально сконструированном экспериментальном стенде измерялась высота взлета груза, который испытуемый отталкивал рукой после предварительного падения его с некоторой высоты (от 0,5 до 3 м). Величина кинетической энергии, используемой для стимуляции мышц, Рис. 53. Изменение высоты взлета (As) различного по весу груза (Р) при отталкивании его после падения с разной высоты (hi) и коэффициента реактивности (R} в зависимости от кинетической энергии падающего груза (Wk) варьировалась как весом (3,3; 6,6; 9,9; 13,6% от максимальной изометрической силы), так и высотой падения груза. Эксперимент показал, что увеличение кинетической энергии за счет веса груза приводит к снижению высоты его взлета, а увеличение за счет высоты падения груза — к увеличению высоты его взлета. Аналогичная картина наблюдалась при исследовании реактивной способности мышц (рис. 53). Рассмотренные тенденции в общем свойственны и движениям, выполняемым в других условиях, хотя там они имеют свои особенности (рис. 54 и 55). Из этих примеров следует, что увеличение кинетической энергии за счет веса груза явно невыгодно, Поэтому целесообразно рассмотреть более подробно изменение характеристик отталкивания по мере увеличения высоты на примере прыжка в глубину (см. рис. 55), тем более что это имеет непосредственное практическое значение для развития прыгучести. И так, значение максимума силы растет до высоты 1,5 м и затем резко снижается, а время движения при этом вначале изменяется несущественно, затем резко возрастает. Максимальные значения мощности работы и реактивности соответствуют высоте 0,75 м. Таким образом, оптимальный диапазон глубины прыжка для стимуляции активности мышц находится в пределах 0,75—1,15 м, причем вначале его работа мышц характеризуется наибольшей мощностью, а в конце — наибольшим максимумом динамического усилия. Эти данные легли в свое время в основу рекомендаций по использованию прыжка в глубину для квалифицированных прыгунов (Ю. В. Верхошанский, 1963, 1964, 1966 Рис. 54. Характеристики отталкивания после прыжка в глубину без отягощения (Р) и с отягощением 10, 20, 30, 40 кг; Рис. 11. Характеристики отталкивания после прыжка в глубину с постепенно повышающейся высоты (ft); (t — время, Рmах - максимальная сила, N — мощность работы, R — коэффициент реактивности) Видимо, заслуживает внимания тот факт, что дальнейшее увеличение глубины прыжка существенно меняет динамические параметры отталкивания. Время опоры быстро растет, и главным образом за счет удлинения момента переключения мышц от уступающей работы к преодолевающей. Величина максимума динамического усилия и скорость сокращения мышц стабилизируются. Происходит четкое разделение отталкивания на два действия — амортизацию, при которой поглощается кинетическая энергия падения, и собственно отталкивание. Амортизация характеризуется увеличением глубины приседания, а собственно отталкивание — постоянной скоростью сокращения мышц. Таким образом, положительный эффект стимуляции мышц путем поглощения кинетической энергии падения может быть с успехом использован только в определенных условиях, учитывающих оптимальные значения выты падения и веса тела или снаряда, а также в том случае, если действие в целом ориентировано преимущественно на быстрое отталкивание. Однако условия работы нервно-мышечного аппарата в момент амортизации падения тела со значительной высоты могут иметь самостоятельное тренировочное значение. Мгновенное развитие напряжения при этом совершенствует способнее, мышц к быстрому переходу в деятельное состояние, Во всяком случае опыт свидетельствует, что вреда скоростно-силовой подготовленности и опорному аппарату это не приносит. Хотя для того, чтобы серьезно говорить о каких-то практических рекомендациях в этом отношении требуются дополнительные исследования. Итак, стимуляция мышц за счет поглощения энергии падения тела или снаряда является весьма эффективным методическим приемом. В его основе лежит способность мышц к более мощному сокращению после предварительного резкого ударного растягивания. Природа издала этот механизм для того, чтобы человек выходил победителем в борьбе с силами инерции своего тела в экстремальных ситуациях. Остается только хорошо его др. пользовать в спортивной практике.
|