ОБУЧЕНИЕ НУМЕРАЦИИ МНОГОЗНАЧНЫХ ЧИСЕЛ
При изучении данного раздела можно выделить следующие ступени: 1) знакомство с новыми счетными и разрядными единицами: 2) счет до 1 млн уже известными счетными единицами и 3) выработка прочных навыков в записи чисел до 1 млн; 4) повторение класса единиц и знакомство с классом тысл 5) анализ многозначных чисел по десятичному составу — в! Учащимся необходимо показать, где в практике, в жизни ж пользуются те многозначные числа, которые они изучают на ур< ках в школе. Нумерация многозначных чисел усваивается умственно отстг лыми учащимися с большим трудом. Эти трудности связаны первую очередь с тем, что многозначное число трудно конкретизи ровать. Наглядные пособия, которые используются при изучении данной темы: абак, счеты, таблица разрядов и классов. Таблицы™ соотношения мер длины и мер массы являются условными пособиями. Они скорее конкретизируют не число, а десятичную систему счисления. Обобщенные понятия, которые используются для усвоения как устной, так и письменной нумерации, носят также условный и отвлеченный характер. К ним относятся понятия разряда, класса, поместного значения цифры в числе и др. Учащиеся школы VIII вида испытывают затруднения в счете как простыми единицами, так и другими единицами счета (десятками, сотнями, единицами тысяч и др.). Когда надо сделать переход к новому разряду или классу (1299—1300, 2999—3000), ученик считает: две тысячи девятьсот девяносто десять и т. д. Как и раньше, при изучении чисел предыдущих концентров, наибольшие затруднения вызывает счет в обратном порядке и счет равными числовыми группами (по 25, 50, 200, 250, 500). Наблюдаются также трудности при чтении многозначных чисел. На первых порах ученики не выделяют при чтении класса тысяч (например, число 4231 читают как 423 один или 42, 31, не учитывают нулей при чтении чисел (например, число 5620 читают как 562, 3085 читают как 385 или 3, 0, 85). Не только чтение, но и выработка умений и навыков при письме многозначных чисел требует от учащихся значительных усилий, большого количества тренировочных упражнений. Учащиеся переставляют цифры местами, значит, испытывают трудности в усвоении позиционного значения цифр в числе, пропускают нули или вписывают лишние (например, число' 308 576 записывают как 38 576, число 38 000 записывают как 380 000, число 80 050 записывают как 80 500 и т. д.). 212 Нечеткое представление о разрядах, классах нередко затрудня-
ет сравнение соседних разрядов и классов (например, 2, 20, 200, 2000; 5 и 5 тысяч; 60 и 60 тысяч), нахождение наибольшего и наименьшего числа каждого разряда. Причем трудности, возникающие у учащихся при изучении темы «Нумерация многозначных чисел», неоднородны. Одни учащиеся довольно быстро усваивают устную нумерацию (счет и анализ чисел), но долго не могут постичь письменную нумерацию. Для других оказывается проще усвоение письменной нумерации, а последовательность счета, десятичный анализ чисел усваивается медленнее, с большим трудом. Изучение нумерации многозначных чисел не должно ограничиваться только теми уроками, которые отводятся на первоначальное знакомство с этой темой. Упражнения на закрепление устной и письменной нумерации должны быть неотъемлемой частью почти каждого урока математики. Их следует включать в устный счет, арифметические диктанты. От сознательного усвоения нумерации зависит успех овладения арифметическими действиями. В действующих учебных программах предлагается различная последовательность изучения нумерации многозначных чисел в школах VIII вида для учащихся с интеллектуальным недоразвитием. В одних программах предлагается многозначные числа в пределах 1 000 000, т. е. все числа II класса тысяч, изучать не сразу, а сначала ознакомить учащихся с числами в пределах 10 000 (6-й класс), затем в пределах 100 000 (7-й класс), и, накрнец, в пределах 1 000 000 (8-й класс). В других программах предлагается изучение сразу всего класса тысяч, т. е. всех чисел в пределах 1 000 000 в 6-м классе. Новая последовательность изучения многозначных чисел позволит, как показали специальные исследования Б. Б. Горскина, И. М. Шейной, быстрее сформировать обобщенное понимание сущности десятичной системы счисления, в которой при чтении и записи многозначных чисел важно уметь выделять классы, в каждом классе — три разряда (единицы, десятки, сотни). Более раннее ознакомление учащихся со всем классом многозначных чисел (6-й класс) в пределах 1 000 000 позволяет закреплять знания нумерации в течение длительного времени (6—8-е классы). В данном учебнике мы предлагаем методику изучения многозначных чисел до 1 000 000, учитывая разную последовательность при изучении нумерации многозначных чисел.
I вариант. Методика изучения. Последовательность: 1. Повторение нумерации в пределах 10, 100, 1000 (особо 2. Нумерация целых тысяч до 10 000 (счет единицами тысяч д 3. Нумерация четырехзначных чисел: а) счет сотнями, десятками, единицами до 10 000; б) образование и запись полных и неполных четырехзначны.-. в) анализ чисел; г) округление числа до указанного разряда. В такой же последовательности изучается нумерация в пределах 100 000 и 1 000 000. При изучении нумерации в пределах 100 000 и 1 000 000 включаются упражнения на формирование понятия о классах. Учащиеся анализируя число, выделяют не только разряды, но и классы. Многозначные числа являются характеристикой множеств, содержащих большое количество элементов, поэтому их конкретизация в школьных условиях ограничена. Но по возможности учитель должен хотя бы нарисовать, образно воссоздать перед учащимися те жизненные ситуации, при которых счет ведется крупными единицами счета, где применение больших единиц счета обусловлено самими условиями, потребностями человека. Например, учитель говорит: «Дежурный раздает каждому ученику по 5 тетрадей. Как он будет отсчитывать по 5 тетрадей? Какую единицу счета он выберет?» (Единицу.) «Завхоз выдает каждому учителю на класс по 80 тетрадей. Чтобы быстрее отсчитать 80 тетрадей, какую единицу счета он выберет?» (Десяток. Он разложит тетради по 10 и будет считать десятками.) «В магазин привезли тетради, упакованные в пачки по 100 штук. Какими единицами счета будет считать эти тетради продавец, чтобы определить их общее количество»? (Сотнями.) «С фабрики на склад привезли тетради, упакованные в пачки по 1000 штук. Какими единицами счета удобнее пересчитать эти тетради?» (Единицами тысяч.) Значит, считать можно единицами, десятками, сотнями, единицами тысяч. Далее на наглядных пособиях (счетах, абаках, арифметическом ицике, палочках) учащиеся вспоминают, как образовалась каждая единица счета из предыдущей. Для этого учитель предлагает считать единицами до 10 и заменить их одним десятком, считать десятками до 10 десятков и сменить одной сотней, считать сотнями до 10 сотен и заменить их одной единицей тысяч. Затем учитель замечает, что единицами тысяч можно считать так же, как считали простыми единицами, но добавлять при счете слово «тысяча». В связи с этим ведется счет пучков палочек, связанных по 1000. Откладываем по одной тысяче на четвертой проволоке счетов: 1 тысяча, 2 тысячи, 3 тысячи,..., 10 тысяч. 10 тысяч заменить одним десятком тысяч. Один десяток тысяч откладывается на пятой проволоке счетов. Далее сравнивается каждая счетная единица с предыдущей: 1 десяток содержит 10 единиц. 1 сотня содержит 10 десятков. 1 единица тысяч содержит 10 сотен. 1 десяток тысяч содержит 10 единиц тысяч. То есть устанавливается, что каждая последующая единица счета в 10 раз больше предыдущей. Единицами тысяч следует считать в прямом и обратном порядке, причем счет единицами тысяч связывать с определенными ситуациями, например: «Цех выпускает за день 1000 деталей. Сосчитаем, сколько деталей цех выпускает за 2 дня, за 3 дня, за 4 дня, за 10 дней, прибавляя по одной тысяче деталей: 1 тысяча, 2 тысячи, 3 тысячи,..., 10 тысяч деталей». Единицы тысяч откладываются на абаке (в четвертой колонке справа). С помощью абака и разрядной сетки удобно показать учащимся обозначение круглых единиц тысяч цифрами.
|