Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перова М. Н. При решении примеров вида в) рассуждения проводятся т|| «120=100+20, 430+100=530, 530+20=550», т






При решении примеров вида в) рассуждения проводятся т|| «120=100+20, 430+100=530, 530+20=550», т. е. этот случ(сложения (вычитания) сводится к уже известным учащимся с/ чаям сложения (вычитания) а), б).

4. Сложение трехзначных чисел с однозначным, двузначным | трехзначным без перехода через разряд и соответствующие сл\ чаи вычитания:

 

а) 540+5 543+2 545-5 545-2 б) 545+40 585-40 в) 350+23 356+23 373-23 379-23
г) 350+123 673-123      
356+123 679-123      

Выполнение действий производится устно. Учащиеся при выпол«нении действий пользуются теми же приемами, какими они пользо^ вались при изучении действий сложения и вычитания в пределах! 100, т. е. раскладывают второй компонент действия (второе слагав-; мое или вычитаемое) на разрядные единицы и последовательно их] складывают или вычитают из первого компонента.

Например:

350+123

673-123

123=100+20+3 673-100=573 573- 20=553 553- 3=550

123=100+20+3 350+100=450 450+ 20=470 470+ 3=473

5. Особые случаи сложения и вычитания. К ним относятся 1 случаи, которые вызывают наибольшие трудности и в которых ] чаще всего допускаются ошибки. Учащихся больше всего затруд­няют действия с нулем (нуль находится в середине числа или в конце). Случай с числами, содержащими нуль, не требует особых приемов. Но таких примеров надо решать больше, повторить перед решением таких примеров решение примеров на сложение и вычитание, когда компонентом действия является нуль: 0+3, 5+0, 5-5:

а) 308+121 б) 402-201 в) 736-504

308+100=408 402-200=202 736-500=236

408+ 20=428 202- 1=201 236- 4=232
428+ 1=429

г) 0+436 700-0 725-725


х'стные приемы вычислений требуют от учащихся постоянного шза чисел по их десятичному составу, понимания места ры в числе, понимания того, что действия можно производить ко над одноименными разрядами. Не всем учащимся вспомо-льной школы это становится понятным одновременно. 11еред выполнением действий необходимо добиваться от уча-ц\ся предварительного анализа десятичного состава чисел. Учи-и- п. чаще должен ставить вопросы: «С чего надо начинать сложе-|пм"> Какие разряды складываем?»

15 противном случае учащиеся допускают ошибки при вычисле­ниях. Они складывают десятки с сотнями, а результат записывают "|Ц)0 в разряд сотен, либо в разряд десятков, например: 100+10=500, 30+400=70, 30+400=470, 30+400=340, (./0+2=690, 670-3=640.

Эти ошибки свидетельствуют о непонимании позиционного зна­чения цифр в числе, о неумении самостоятельно контролировать результаты действий. Учителю необходимо добиваться того, чтобы учащиеся проверяли выполнение действий, причем делали это не формально, а по существу. Нередко приходится наблюдать, что ученик якобы и сделал проверку, но выполнил ее формально. Он написал только обратное действие, а не решал, поэтому и не заметил допущенной ошибки, например: 490—280=110. Проверка. 110+280=490.

Нередко можно столкнуться с непониманием умственно отста­лыми школьниками (даже старших классов) сущности проверки. Проверка часто выполняется учениками только потому, что этого либо требует учитель, либо такое задание содержится в учебнике. Часто при выполнении проверки ученик получает несоответствие между полученным результатом и заданным примером, но это не служит ему поводом для исправления неверного ответа, например: 570-150=320. Проверка. 320+150=470.

В данном случае проверка выступает как самостоятельное дей­ствие, никак не связанное с тем, которое ученик проверяет.

Учитель постоянно должен помнить об этих ошибках школьни­ков с нарушением интеллекта и требовать ответа на вопросы: «Что показала проверка? Верно ли решен пример? Как доказать, что действие выполнено верно?»

Осознанному выполнению устных вычислений, выработке обоб­щенных способов выполнения действий служит постоянное внима-


 




ние к вопросам сравнения и сопоставления разных по трудно случаев сложения, вычитания. Важно научить учащихся вид| общее и особенное в тех примерах, которые они решают.

Например, сравнить примеры и объяснить их решение:

30+5, 300+40, 300+45, 300+140, 300+145, 300+105.

305-5, 340-40, 345-45, 340-300, 345-300, 345-200.

Полезно и составление учащимися примеров, аналогичных (г хожих) данным, или примеров определенного вида: «Составьт! пример, в котором надо сложить круглые сотни с единицами»;! «Составьте пример на вычитание, в котором уменьшаемое — | трехзначное число, а вычитаемое — круглые десятки» и т. д.1

Для закрепления действий сложения и вычитания в предела» 1000 приемами устных вычислений полезно решение примеров с| неизвестными компонентами.

II. Сложение и вычитание с переходом через) разряд.

Сложение и вычитание с переходом через разряд — это наибо«| лее трудный материал. Поэтому учащиеся выполняют действия столбик. Сложение и вычитание в столбик производятся над каж-| дым разрядом в отдельности и сводятся к сложению и вычитании в пределах 20. Но в этом случае возникают у умственно отсталь школьников трудности в записи чисел, т. е. в умении правильно подписать разряд под соответствующим разрядом.

Часто из-за неумения организовать внимание, из-за недостаточно четкого понимания позиционного значения цифр в числе, а то и из-за небрежности при записи цифр ученики сдвигают число, которое нужно прибавить или вычесть, влево или вправо и поэтому допуска-; ют ошибки в вычислениях. Особенно много ошибок учащиеся допус­кают при записи чисел в столбик, если действие производится над трехзначным и двузначным или однозначным числом. В этом случае десятки подписываются под сотнями, единицы под сотнями или де­сятками. Это приводит к ошибкам в вычислениях.

Например:

375 375 238

+ 6 +38 ~18

~~975~ "775" 58

Наибольшие трудности вызывает действие вычитания. Ошибки в вычислениях носят различный характер. Причиной некоторых из

Слабоуспевающим учащимся разрешается выполнение всех случаев в стол-

бик.


Их является слабое усвоение табличного сложения и вычитания

I пределах 20.

238 275

+__ 7 ~ 7

246 26ТГ

Много ошибок допускается в результате того, что ученики
убывают прибавить получившийся в уме десяток или сотню, а
Также забывают, что «занимали» сотню или десяток. Например:
. 178 345

_____ "218

~29Т ~ТЗТ

600 "283 ~32Т 710 ~345 -275- 600 "283 -42Т

Особенно трудны случаи, при решении которых: 1) переход через разряд происходит в двух разрядах; 2) получается нуль в одном из разрядов; 3) содержится нуль в уменьшаемом; 4) в середине уменьшаемого стоит единица. Например:

375 228






Дата добавления: 2015-09-19; просмотров: 754. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия