Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Умножение и деление на 10, 100, 1000





В концентре 1000 были рассмотрены случаи умножения на 10 и 100. Это же правило распространяется и на умножение, и на деление многозначных чисел на 10 и 100.

Однако первоначально следует повторить с учащимися те слу­чаи умножения 1000 на однозначное число, которые они рассмат­ривали еще при изучении нумерации:

1000x2=1000+1000=2000

или

1 тыс.х2=2 тыс.=2000 1000x5=1 тыс. х 5=5 тыс.=5000

Рассматривается еще несколько случаев умножения 1000 на числа. После этого учащиеся, сравнивая произведение, множите­ли, смогут самостоятельно сделать вывод:

Если один множитель — число 1000, то в произведении ко второму множителю надо приписать три нуля. 234


Используя знание переместительного закона умножения, уча­щиеся смогут решить примеры вида 3x1000.

Деление на 1000, так же как и деление на 10, 100, как пока-м.шает опыт, лучше усваивается как деление по содержанию. 11оэтому сначала решается задача: «Нарубили 8000 кг капусты. Для хранения ее нужно разложить в чаны. В каждый чан войдет ни 1000 кг капусты. Сколько потребуется чанов?» Решение. н()00 кг: 1000 кг. Если 8 тыс. разделить по 1 тыс. (8 тыс.:1 тыс.), и, получим 8. 8000 кг: 1000 кг=8 (чанов).

Рассматривается еще несколько аналогичных примеров. В ре-'ультате учащиеся делают вывод по аналогии с делением на 10 и

100.

Если делитель равен тысяче, то в делимом надо отбросить три нуля и полученное число записать в частное.

Примеры на деление на 10, 100, 1000 записывается в строчку (42 000:1000=42) и решаются устно. Решаются примеры на деле­ние как без остатка, так и с остатком: 80: 10=8 800: 100=8 8000: 1000=8

85: 10=8 (ост. 5)

807: 100=8 (ост. 7)

8507: 1000=8 (ост. 507)

870: 100=8 (ост. 70)

Учитель постоянно должен напоминать учащимся, что остаток должен быть меньше делителя. Действие деления как без остатка, так и с остатком учащиеся должны учиться проверять. Например:

3800:100=38.

Проверка. 38х 100=3800. 7518:1000=7 (ост. 518). Проверка. 7x1000+518=7518.

Познакомившись с умножением и делением на единицу с нуля­ми, учащиеся с трудом дифференцируют правила умножения и деления на 10, 100, 1000, смешивают эти правила, не могут вспомнить, когда нужно нули приписывать, а когда их отбрасы­вать. Это происходит особенно часто при умножении в случае, когда в первом множителе есть нули. Например: 3800x10. В произведении ученик может написать число 380. При делении


3856:10 в частное ученик переписывает делимое и нуль сщ т. е. получает 38 560.

Такие ошибки возникают, как правило, при самостоятельно»! выполнении действий, когда некому наводящим вопросом актуали» зировать вовремя имеющиеся знания, направить внимание учени«ка на анализ выполняемой операции с числами.

Предупреждению возможных ошибок и лучшей дифференциа­ции действий умножения и деления на 10, 100, 1000 служит чередование примеров на умножение и деление, их сопоставле­ние, сравнение ответов (при умножении число увеличивается, при делении уменьшается), способов выполнения действий, а также решение сложных примеров, в которых имеются оба действия: 4700:100x1000.

Умножение и деление на разрядные числа (десятки, сотни, тысячи)

Умножение на разрядные числа. Подготовительным упражне­нием к умножению на разрядные числа является повторение таб­личного умножения, умножения на однозначное число, а также на 10, 100, 1000. Следует вспомнить, как круглое число представить в виде произведения двух чисел (например, 20=2-10, 500=5-100, 6000=6-1000), повторить уже известные учащимся случаи умножения на круглые числа (например, 24 12-20= 12-(2-10)=(12-2)-10=24-10=240), вспомнить 30 правило: чтобы умножить число на круглые десятки, 720 нужно умножить это число на число десятков и к полу­ченному произведению приписать нуль, т. е. умножить его на 10.

Это правило учащиеся применяют и при умножении больших чисел в пределах 10 000, 100 000 и 1 000 000. Аналогично учащиеся знакомятся с умножением двузначных, трех- и четырехзначных чисел на круглые сотни: 25 - 300=25 - 3 • 100=75 • 100=7500.

На умножение на круглые тысячи распространяется уже из­вестное учащимся правило умножения числа на круглые десятки и сотни.

Сначала рассматривается устно решение примеров вида: 7x5000. Можно 5000 записать как произведение 5-1000. 7 - (5 - 1000Ы7 • 5) -1000=35 -1000=35 000.

Деление на разрядные числа. Учащиеся уже знакомы с деле­нием на круглые десятки и сотни. При изучении действий в 236


пределах 1000 они опираются на этот знакомый материал. Поэто­му необходимо повторить табличное деление, деление на 10, 100, 1000 и, так же как в умножении, вспомнить, как представить круглые числа в виде произведения двух чисел (30=3-10, 100=3-100, 3000=3-1000), повторить устные и письменные слу­чаи деления.

400:20=400:10:2=40:2=20

Деление на круглые сотни, а затем и тысячи можно показать ма устных случаях деления, основываясь на приеме последова­тельного деления:

2500:500=2500:100:5=25:5=5;

250 000:5000=250 000:1000:5=250:5=50.

Затем вводится деление на круглые десятки, сотни и тысячи с остатком. Например: 670:40. В частном будет двузначное число. В частном берем по 1, умножаем 1 на 40. Вычитаем 67—40=27. 270 делим на 40. Сначала делим 270 и 40 на 10. Затем делим неполное делимое и делитель: 27:4. Берем по 6. Умножаем 6 на 40, получаем 240. Вычитаем. Остаток 30 (меньше 40), частное 16.

 
 
3(57"
Т6~

Наряду с общими случаями учащиеся разбирают решение осо­бых случаев, когда в частном получаются нули:

 

 

 

825000 "6000 3000 •275"
22500 "21000
15000 "15000






Дата добавления: 2015-09-19; просмотров: 1580. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия