Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Деление на двузначное число





Деление на двузначное число впервые вводится в 7-м классе школы VIII вида. Первое знакомство с этим видом деления проис­ходит на примерах внетабличного деления, а именно при делении двузначного числа на двузначное, когда в частном получается однозначное число. В этом случае частное отыскивается приемом округления делимого и делителя до круглых чисел. Например: «При отыскании частного 93:31 округляем делимое 93 до 90, делитель 31 до 30. Тогда 90:30=3. Значит, в частном надо взять по 3. Проверяем: 31x3=93. Ответ верен.

Рассмотрим другой пример: 81:27. Округлим 81 до 80, а 27 до 30, получим 80:30. Можно взять по 2. Проверим: 27x2=54, 84—54=27. Значит, в частном должно быть большее число. Берем по 3. Проверяем: 27x3=81. Частное равно 3».

Однако, как показывает опыт, такие рассуждения и множество промежуточных вычислений доступны не всем учащимся. Поэтому целесообразно учащихся познакомить с приемом деления, который доступен большинству умственно отсталых школьников, если они овладели приемом умножения двузначного числа на однозначное. Учитель показывает, что при делении на двузначное число труд­нее всего правильно подобрать цифру частного. Чтобы преодолеть эту трудность можно воспользоваться последовательным умноже-


нием частного на числа 1, 2, 3 и т. д., пока не получится числ<> близкое к делимому. Например, 81:27.

27x1=27 — это число меньше 81.

27x2=54 — это число меньше 81.

27x3=81 — получилось число, равное делимому, значит, нал в частном взять по 3. Все промежуточные действия умножени для отыскания нужной цифры частного необходимо производить > тетради. Запись решения примера выглядит так:

27 Т
81 "81

27x1=27

,27

X

х27

Х 3 ~8Т

Далее последовательно рассматривается деление трех-, четы рех-, пяти- и шестизначных чисел на двузначное число.

При решении всех этих примеров необходимо учитывать, что отделяемые две цифры делимого составляют число, которое либо равно, либо больше делителя, и только после этого рассматрива ются случаи, когда это число меньше делителя, и в этих случаях требуется отделить три цифры делимого.

23x1=23 23x2=46

35x1=35 35x2=70

,35
V35 Х 4 140
.35

,35

X

Х

Л 7 "245"
 

5 Т75"

34—

73x1=73

73 Х 2 Т46"
V73 Х 4 "292"

V73

Х 3 "2Т9"

Наиболее успевающие по математике учащиеся постепенно со­кращают число проб на умножение; умножение делителя на 1 они не записывают, некоторые устно умножают делитель на 2, а то я на 3, и начинают умножать на 4 и 5 и т. д. 240


Естественно, что сильным учащимся следует показать прием мкругления делимого и делителя.

Например, рассматривается деление трехзначных чисел на дву-япачное число при однозначном частном и, например: 465:93. Рассуждения проводим так: «Делитель заменяем круглым числом.;->то число 90, или 9 десятков. В делимом тоже отделяем десятки, их 46. Делим 46 на 9. В частном берем 5. Проверяем, умножая <)3х5. В данном случае 5 подходит».

Рассматриваются и случаи деления с остатком:

728 ~70 ---- 28

35 ТГост. 28)

805 23 "69 [35" 115 '115

Вслед за делением с остатком рассматривается деление трех­значного числа на двузначное, когда в частном получается дву­значное число. Вначале в делимом подбираются такие числа, в которых первое неполное делимое состояло бы из двух цифр, а делитель состоял из цифр, не превышающих 5. «При выполнении деления делитель заменяем наименьшим круглым числом 20. В делимом отделяем две цифры. Первое неполное делимое — 80 десятков. В частном будет двузначное число. 80 делим на 20, будет по 4, но по четыре брать нельзя, так как 23x4=92. Берем по 3. Проверяем: 23x3=69, 80—69=11. Остаток меньше делите­ля. Значит, первую цифру подобрали правильно. 115 делим на 20. Берем первые две цифры делимо­го (11) и первую цифру делителя (2), 11 делим на 2. Берем по 5. Проверяем: 23x5=115. Вычитаем. Остатка нет. Значит, 5 подобрали правильно. Частное 35. Проверим умножением: 35x23=805». После этого рассматриваются случаи деления четырехзначного числа на двузначное.

И наконец, рассматриваются такие случаи деления: число, со­стоящее из двух цифр делимого, не делится на делитель.

17845 43 "172 |415 64 " 43 215 ~215

Рассуждения проводятся так: «17 тысяч не де­лятся на 43, тогда на 43 разделим 178 сотен. В частном получится трехзначное число — ставим 3 точки. Делитель 43 заменим меньшим круглым числом 40. Делим 178 на 40. Берем в делимом первые две цифры, а в делителе первую цифру. Получаем делимое 17, а делитель 4. 17 делим на 4. Берем по 4, проверяем умножением и т. д.».


В методической литературе, связанной с вопросами начально обучения математике, после окончания деления ставится ну,) показывающий, что деление закончено и произведено без остап

В школе VIII вида нуль записывать не рекомендуется. От показывает, что учащиеся (по аналогии с решением примеров, которых нули переносятся в частное из делимого) этот нуль си сят в частное, рассуждая при этом так: «О делим на 82, получа< ся нуль. В частное записываем нуль».

Например:

82 3070"
25174 "246
574 "574
~0 О

Особое внимание необходимо уделять рассмс рению случаев, когда делимое оканчивается ну}. ми и когда нули получаются в середине частноГ] Подготовительными упражнениями являют! деление нуля (0:5, 0:12), а также решение пр! меров с небольшими числами вида 320:8=4| 312:3 и т. д. Рассмотрим решение пример 24 000:75. Рассуждения проводятся так:

24000 "225
Т50 "150

«Первое неполное делимое — 240 сотен. Зн чит, в частном будет трехзначное число. Ставим точки. Округляем делитель до 70. Делим 240 I 70. Сначала 24 делим на 7. Берем по 3. Провер ем умножением. Остаток 15. Делим 150 дес. н«. 75. 15:7 берем по 2. Проверяем умножением. Де­сятки разделились все. Делим 0 единиц: 0:75=0. Пишем в частном 0. Частное 320». После изучения всех четырех арифметических действий для закрепления вычислительных навыков решаются примеры вида 626 640:84+212 760x36, (7368+28 300)х 12-17 899.

Вопросы и задания

1.Составьте схему последовательности изучения нумерации многознач­
ных чисел по I и II вариантам.

2. Изготовьте эскизы таблиц для изучения нумерации многозначных
чисел, покажите методику их использования.

3. Сравните алгоритмы умножения (деления) многозначного числа на
однозначное, двузначное, трехзначное числа.

4. Проанализируйте ошибки учащихся при выполнении четырех арифме­
тических действий, определите их причины, наметьте пути преодоления.


Глава 14 МЕТОДИКА ИЗУЧЕНИЯ МЕТРИЧЕСКОЙ СИСТЕМЫ МЕР







Дата добавления: 2015-09-19; просмотров: 654. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия