Сокращение дробей
Предварительно необходимо готовить учащихся к этому преоб разованию дробей. Как известно, сократить дробь — это значит числитель и знаменатель дроби разделить на одно и то же число Но делителем должно быть такое число, которое дает в ответе несократимую дробь. За месяц-полтора до ознакомления учащихся с сокращением дробей проводится подготовительная работа — предлагается из таблицы умножения назвать два ответа, которые делятся на одно и то же число. Например: «Назовите два числа, которые делятся на 4». (Сначала учащиеся смотрят' в таблицу, а потом называют эти числа по памяти.) Они называют и числа, и результаты их. деления на 4. Затем учитель предлагает ученикам для дроби, 304 например |, подобрать делитель — для числителя и знаменателя какую таблицу надо посмотреть? На какое число можно разделить 5 и 15?) Выясняется, что при делении числителя и знаменателя дроби на одно и то же число величина дроби не изменилась (это можно показать на полоске, отрезке, круге), только стали крупнее доли: -тг=т- ВиД ДРоби стал проще- Учащиеся подводятся к выводу правила сокращения дробей. Учащимся школы VIII вида часто оказывается трудно подобрать наибольшее число, на которое делится и числитель, и знаменатель дроби. Поэтому нередко наблюдаются ошибки такого характера, как -^=|, т. е. ученик не нашел наибольший общий делитель для чисел 4 и 12. Поэтому на первых порах можно разрешить постепенное деление, т. е. -^=^=^ но при ЭТОМ °Пра" шивать, на какое число разделили числитель и знаменатель дроби сначала, на какое число потом и затем на какое число сразу можно было разделить числитель и знаменатель дроби. Такие вопросы помогают учащимся постепенно отыскивать наибольший общий делитель числителя и знаменателя дроби. Приведение дробей к наименьшему общему знаменателю* Приведение дробей к наименьшему общему знаменателю нужно рассматривать не как самоцель, а как преобразование, необходимое для сравнения дробей, а затем и для выполнения действий сложения и вычитания дробей с разными знаменателями. Учащиеся уже знакомы со сравнением дробей с одинаковыми числителями, но разными знаменателями и с одинаковыми знаменателями, но разными числителями. Однако они еще не умеют сравнивать дроби с разными числителями и разными знаменателями. Перед тем как объяснять учащимся смысл нового преобразования, необходимо повторить пройденный материал, выполнив, например, такие задания: Сравнить дроби |, у, |. Сказать правило сравнения дробей с одинаковыми числителями. Сравнить дроби -г-, тт,?-, -?. Сказать правило сравнения др с одинаковыми знаменателями. 3 1 Сравнить дроби ^ и -^. Эти дроби учащиеся сравнить затрудняются, так как у них разные числители и разные знаменатели. Чтобы ] сравнить эти дроби, нужно сделать равными числители или знаменатели этих дробей. Обычно в одинаковых долях выражают знаменате-| ли, т. е. приводят дроби к наименьшему общему знаменателю. Учащихся необходимо познакомить со способом выражения \ дробей в одинаковых долях. Сначала рассматриваются дроби с разными знаменателями, но такие, у которых знаменатель одной дроби делится без остатка на знаменатель другой дроби и, следовательно, может являться и знаменателем другой дроби. 3 1 Например, у дробей тг и •*• знаменателями являются числа 8 и 2. Чтобы выразить эти дроби в одинаковых долях, учитель предлагает меньший знаменатель умножать последовательно на числа 2, 3, 4 и т. д. и делать это до тех пор, пока не получится результат, равный знаменателю первой дроби. Например, 2 умножим на 2, получим 4. Знаменатели опять у двух дробей разные. Далее 2 умножим на 3, получим 6. Число 6 также не подходит. 2 умножим на 4, получим 8. В этом случае знаменатели стали одинаковыми. Чтобы дробь не изменилась, надо и числитель дроби -^ умножить на 4 (на основании основного свойства дроби). Получим 4 34 дробь д-. Теперь дроби •§• и -д- выражены в одинаковых долях. Их легко и сравнивать, и выполнять с ними действия. Найти число, на которое нужно умножить меньший знаменатель одной из дробей, можно делением большего знаменателя на меньший. Например, если 8 разделить на 2, то получим число 4. На это число нужно умножить и знаменатель, и числитель дроби. Значит, чтобы выразить в одинаковых долях несколько дробей, нужно больший знаменатель разделить на меньший, частное умножить на знаменатель и числитель дроби с меньшими знаменате- 15 2 лями. Например, даны дроби ^-, -^ и -д. Чтобы эти дроби привести к наименьшему общему знаменателю, нужно 12:6=2, 2x6=12, 306 '2x1=2. Дробь ^ примет вид -^. Затем 12:3=4, 4x3=12, 2 8 152 4x2 = 8. Дробь д- примет вид -^-. Следовательно, дроби ^-, -^ и -у 25 8 примут соответственно вид -™-, -гя- и -г*-, т. е. окажутся выражен- ными в одинаковых долях. Проводятся упражнения, которые позволяют сформировать умения приведения дробей к общему наименьшему знаменателю. с о о Например, надо выразить в одинаковых долях дроби ттг и •*•• тт. I 3 I- Т Чтобы учащиеся не забывали то частное, которое получается от деления большего знаменателя на меньший, целесообразно его с записывать над дробью с меньшим знаменателем. Например, -т^- и 2х5 6 10,д,51 -у, тт и ТВ"' Можно также предложить сравнить дроби -^ и т^. 5 И ТВ"' 3 и? и Т- д' Затем рассматриваются такие дроби, у которых больший знаменатель не делится на меньший и, следовательно, не является 3 5 общим для данных дробей. Например, •§• и ^-. Знаменатель 8 не делится на 6. В этом случае больший знаменатель 8 будем последовательно умножать на числа числового ряда, начиная с 2, до тех пор, пока не получим число, которое делится без остатка на оба знаменателя 8 и 6. Чтобы дроби остались равными данным, числители нужно соответственно умножить на те же числа. На- 3 5 пример, чтобы дроби •§• и -^ были выражены в одинаковых долях, больший знаменатель 8 умножаем на 2(8x2 = 16). 16 не делится на 6, значит, 8 умножаем на следующее число 3(8x3=24). 24 делится на 6 и на 8, значит, 24 — общий знаменатель для данных дробей. Но чтобы дроби остались равными, числители их надо увеличить во столько же раз, во сколько раз увеличили знаменатели, 8 увеличили в 3 раза, значит, и числитель этой дроби 3 увеличим в 3 раза. 3 9 Дробь -д примет вид щ. Знаменатель 6 увеличили в 4 раза.
Таким образом, подводим учащихся к общему выводу (правил знакомим их с алгоритмом выражения дробей в одинаковых дс 3 5 Например, даны две дроби т и у. ч 1. Находим наименьший общий знаменатель: 7x2=14, 7x3=1.. , а 3 5 натель для дробей т и у- 2. Находим дополнительные множители: 28:4=7,
28:7=4. = \4 3. Запишем их над дробями: —г- и -=- 4. Числители дробей умножим на дополнительные множителц| „, 21 20 о Получим дроби с одинаковыми знаменателями ^г и ^тг. Значит,! _. 3 5 дроби х и 7 мы привели к общему наименьшему знаменателю. Опыт показывает, что ознакомление учащихся с преобразование» дробей целесообразно проводить перед изучением различных ариф метических действий с дробями. Например, сокращение дробей ил», замену неправильной дроби целым или смешанным числом целесооб-^ разно дать перед изучением сложения и вычитания дробей с одина-| ковыми знаменателями, так как в полученной сумме или разноси придется делать либо одно, либо оба преобразования. и 1,1 2 15.38,15, 7 • 12, Например, т+т=т=7; 7+7=7=\7; ^+^-^-=1 Приведение дробей к наименьшему общему знаменател, лучше изучать с учащимися перед темой «Сложение и вычитание! дробей с разными знаменателями», а замену смешанного числа! неправильной дробью — перед темой «Умножение и деление дро-' бей на целое число».
|