Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЛАБОРАТОРНАЯ РАБОТА. Найти iPhone Вы можете использовать функцию Найти iPhone, чтобы помочь обнаружить местонахождение любого потерянного устройства





ЛАБОРАТОРНАЯ РАБОТА

ВАЖНЕЙШИЕ КЛАССЫ ХИМИЧЕСКИХ СОЕДИНЕНИЙ (2012)

 

Цель работы – ознакомление с важнейшими классами неорганических соединений: оксидами, гидроксидами, солями, способами их получения и свойствами.

 

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

На сегодняшний день известно около 300 тысяч неорганических соединений. Их можно разделить на три важнейших класса: оксиды, гидроксиды и соли.

ОКСИДЫ – продукты соединения элементов с кислородом.

Оксиды можно получить реакцией соединения элемента с кислородом:

2Mg + O2 = MgO,

4P + 5O2 = 2 P2O5

или реакцией разложения сложного вещества:

CaCO3 = CaO + CO2,

2 Zn(NO3)2 = 2 ZnO + 4 NO2 + O2.

Различают солеобразующие и несолеобразующие оксиды, а также пероксиды.

Солеобразующие оксиды подразделяют на основные, кислотные и амфотерные.

Основные оксиды образуют щелочные металлы (Li, Na, K, Rb, Cs, Fr), щелочно-земельные металлы (Mg, Ca, Sr, Ba) и металлы с переменной степенью окисления, расположенные в побочных подгруппах ПТМ в своих низших степенях окисления +1, +2 (например:Zn, Cd, Hg, Cr, Mn и др.). Их гидроксиды являются основаниями.

Хорошо растворимые в воде основания щелочных металлов называются щелочами. Они могут быть получены при растворении в воде соответствующих оксидов, например:

Na2O + H2O = 2NaOH

Гидроксиды (основания) щелочно-земельных металлов (Mg, Ca, Sr, Ba) также образуются при растворении в воде соответствующих оксидов однако, все они, кроме гидроксида бария Ba(OH)2, являются мало- или труднорастворимыми.

Основные оксиды реагируют с кислотными оксидами и кислотами с образованием солей:

CaO + CO2 = CaCO3;

CuO + 2 HCl = CuCl2 + H2O.

Кислотные оксиды образуют неметаллы (B, C, N, P, S, Cl и др.), а также металлы с переменной степенью окисления, расположенные в побочных подгруппах ПТМ, в своих высших степенях окисления +5, +6, +7 (например: V, Cr, Mn и др.).

Гидратами кислотных оксидов являются кислоты, которые могут быть получены при взаимодействии кислотных оксидов с водой:

SO3 + H2O = H2SO4

Кислотные оксиды реагируют с основными оксидами и основаниями:

SO2 + Na2O = Na2SO3;

N2O5 + 2 NaOH = 2 NaNO3 + H2O.

Амфотерные оксиды образуют металлы главных подгрупп ПТМ (например: Al3+, Sn2+, Pb2+ и др.) и металлы с переменной степенью окисления, расположенные в побочных подгруппах ПТМ, в средних степенях окисления +3, +4 (Cr, Mn, и др.). Их гидроксиды (гидраты) проявляют как основные, так и кислотные свойства. Амфотерные оксиды реагируют как с кислотами, так и с основаниями:

Cr2O3 + 6 HCl = 2 CrCl3 + 3 H2O;

Cr2O3 + 2 NaOH = 2 NaCrO2 + H2O

. Несолеобразующих оксидов немного (например, CO, NO, N2O), они не образуют солей ни с кислотами, ни с основаниями.

 

Пероксиды - производные перекиси водорода (H2O2). Пероксиды щелочных металлов (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba) относятся к солям пероксида водорода. В них атомы кислорода связаны между собой ковалентной связью (например, K2O2: K– O – O –K) и легко разлагаются с отщеплением атомарного кислорода, поэтому пероксиды являются сильными окислителями

 

ГИДРОКСИДЫ – продукты соединения вные гидроксиды (основания), кислотныеоксидов с водой. Различают осно гидроксиды (кислоты) и амфотерные гидроксиды (амфолиты).

Основные гидроксиды (основания) в растворе диссоциируют на ионы металла и гидроксид – ионы:

NaOH ↔ Na + + OH .

Кислотность основания определяется числом гидроксид-ионов OH‾,которые называют функциональными группами оснований. По числу функциональных групп различают однокислотные (например: NaOH), двухкислотные (например:Ca(OH)2), трехкислотные (например:Al(OH)3) основания.

Многокислотные основания диссоциируют ступенчато:

Ca(OH)2 ↔ (CaOH)+ + OH , (CaOH)+ ↔ Ca2+ + OH .

Водные растворы хорошо растворимых оснований (щелочей) изменяют окраску индикаторов. В щелочных растворах фиолетовый лакмус синеет, бесцветный фенолфталеин становится малиновым, метиловый оранжевый – желтым.

Основания реагируют с кислотами, образуя соли и воду:

NaOH + HCl = NaCl + H2O.

Если основание и кислота взяты в эквимолярных отношениях, то среда становится нейтральной, а такая реакция называется реакцией нейтрализации.

Многие нерастворимые в воде основания при нагревании разлагаются:

Cu(OH)2 = CuO + H2O.

Щелочи получают растворением оксидов в воде:

K2O + H2O = 2 KOH.

Нерастворимые в воде основания можно получить действием щелочей на растворимые соли металлов:

CuSO4 + 2 NaOH = Cu(OH)2 ↓ + Na2SO4.

Кислотные гидроксиды (кислоты) диссоциируют на ионы водорода Н+ (точнее ионы гидроксония Н3О+) и кислотный остаток:

HCl ↔ H+ + Cl.

Основность кислоты определяется числом ионов водорода, которые называют функциональными группами для кислоты, например: HCl – одноосновна, H2SO4, - двухосновна, H3PO4 – трехосновна.

Многоосновные кислоты диссоциируют ступенчато:

H2SO3 ↔ Н + + HSO3; HSO3 ↔ Н + + SO3.

Различают кислотыбескислородные (HCl, HI, H2S, HCN и др.) и кислородсодержащие (HNO3, H2SO4, H2SO3, H3PO4 и др.).

В растворах кислот лакмус становится красным, метиловый оранжевый – розовым, фенолфталеин остается бесцветным.

Кислоты получают растворением кислотных оксидов в воде:

P2O5 + 3 H2O = 2 H3PO4

или по реакции обмена соли с кислотой:

Ca3(PO4)2 + 3 H2SO4 = 3 CaSO4 + 2 H3PO4.

Амфотерные гидроксидымфолиты) представляют собой гидроксиды, проявляющие в реакциях как основные, так и кислотные свойства. К ним относятся Be (OH)2, Al (OH)3, Zn(OH)2, Cr(OH)3 и др. Амфотерные гидроксиды реагируют с основаниями как кислоты, с кислотами – как основания:

Сr(OH)3 + 3 HCl = CrCl3 + 3 H2O;

Сr(OH)3 + 3 NaOH = Na3[Cr(OH)6].

СОЛИ при диссоциации образуют ионы (катионы) металлов (или ион аммония NH4+) и ионы (анионы) кислотных остатков:

Na2SO4 ↔ 2 Na+ + SO4 2 ‾,

NH4NO3 ↔ NH4+ + NO3.

Различают средние, кислые и основные соли.

Средние соли можно рассматривать как продукты полного замещения атомов водорода в кислоте атомами металла или гидроксогрупп основания кислотными остатками: NaCl, K2SO4, AlPO4.

H2SO4 + Ba(OH)2 = BaSO4 + 2H2O

KOH + HNO3 = KNO3 + H2O

Средние соли диссоциируют на катионы металла и анионы кислотных остатков:

AlPO4 ↔ Al 3+ + PO4 3 ‾.

Кислые соли (гидросоли) являются продуктами неполного замещения атомов водорода многоосновных кислот атомами металла: NaHSO4, Al (H2PO4)3, KHCO3^

H2SO4 + NaOH = NaHSO4 + H2O

Диссоциация кислой соли выражается уравнением:

Al(H2PO4)3 ↔ Al 3+ + 3 (H2PO4).

Анион (H2PO4) дальнейшей диссоциации подвергается в незначительной степени.

вные солиОсно (гидроксосоли) являются продуктами неполного замещения гидроксогрупп многокислотного основания на кислотные остатки: AlOHSO4, MgOHCl, (CuOH)2SO4.

Mg(OH)2 + HCI = MgOHCI + H2O

Диссоциация основной соли выражается уравнением:

AlOHSO4 ↔ (AlOH) 2 + + SO4 2‾.

Катион (AlOH)2+ дальнейшей диссоциации подвергается в незначительной степени.

Средние соли могут быть получены многими способами:

соединением металла и неметалла: 2 Na + Cl2 = 2 NaCl;

соединением основного и кислотного оксидов: CaO + CO2 = CaCO3;

вытеснением активным металлом водорода или менее активного металла:

Zn + 2 HCl = H2 + ZnCl2,

Zn + CuSO4 = ZnSO4 + Cu;

реакцией нейтрализации: NaOH + HCl = NaCl + H2O;

реакцией обмена: Ba(NO3)2+ Na2SO4 = BaSO4 + 2 NaNO3 и др.

Кислые соли могут быть получены в кислой среде:

NaOH + H2SO4 (избыток) = NaHSO4 + H2O;

Na3PO4 + 2 H3PO4 (избыток) = 3 NaH2PO4.

Основные соли могут быть получены в щелочной среде:

H2SO4 + 2 Cu(OH)2 (избыток) = (CuOH)2 SO4 + Na2SO4,

2 CuSO4 + 2 NaOH(недостаток) = (CuOH)2 SO4 + Na2SO4

Кислые соли при избытке щелочи и основные соли при избытке кислоты переходят в средние соли: NaHSO4 + NaOH (избыток) = Na2SO4 + H2O,

(CuOH)2 SO4 + H2SO4 (избыток) = 2 CuSO4 + 2 H2O.

Для многих металлов характерны комплексные соединения, которые диссоциируют в растворе как сильные электролиты, образуя устойчивые комплексные ионы:

CuSO4 + 8NH4OH (избыток) = [Cu (NH3)4](OH)2 + [Cu (NH3)4] SO4 + 8 H2O.

Степень диссоциации комплексных соединений незначительна:

[Cu (NH3)4](OH)2 ↔ [Cu (NH3)4] 2+ + 2 OH

[Cu (NH3)4] SO4 ↔ [Cu (NH3)4] 2+ + SO 42‾

Комплексные соединения многих d – металлов окрашены, что позволяет их использовать в аналитической практике для обнаружения ионов металлов.

. Существуют также двойные соли, образованные разными металлами и одним кислотным остатком (KAl(SO4)2) и смешанные, образованные одним металлом и разными кислотными остатками (CaClOCl).

осно́вный или кислотный.

 

ПРАКТИЧЕСКАЯ ЧАСТЬ

 

ПОЛУЧЕНИЕ И СВОЙСТВА ОКСИДОВ







Дата добавления: 2015-09-15; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия