Основные положения молекулярно-кинетической теории
Одновременно с созданием термодинамических методов исследования развивались корпускулярные представления о тепловых свойствах макросистем, в соответствии с которыми ставилась задача объяснения всех процессов, происходящих с ними, на основе предположения о том, что вещество состоит из атомов или молекул и движение их подчиняется законам Ньютона. К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул – молекулярно-кине-тическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Поведение громадного числа молекул анализируется с помощью статистического метода, который основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц систем, особенностями их движения и усредненными значениями кинетических и динамических характеристик этих частиц (скорости, энергии, давления и т.д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул. После создания молекулярной физики термодинамика не утратила своего значения. Она помогает понять многие явления и с успехом применяется при расчетах многих важных механических устройств. Общие законы термодинамики справедливы для всех веществ, независимо от их внутреннего строения. Однако при расчете различных процессов с помощью термодинамики многие физические параметры, например теплоемкости тел, необходимо определять экспериментально. Статистические же методы позволяют на основе данных о строении вещества определить эти параметры. В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств макросистем. Основные положения молекулярно-кинетических представлений
В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три положения: любое тело – твердое, жидкое или газообразное – состоит из большого числа весьма малых частиц – молекул (атомы можно рассматривать как одноатомные молекулы); молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющим какого-либо преимущественного направления движения; интенсивность движения молекул зависит от температуры вещества. Тепловые процессы связаны со строением вещества и его внутренней структурой. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а такое же нагревание металлического стержня заметно не влияет на него. Такое различное действие нагревания связано с различием во внутреннем строении этих веществ. Поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И, наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое истолкование. Свойства и поведение макросистем, начиная от разряженных газов верхних слоев атмосферы и кончая твердыми телами на Земле, а также сверхтвердыми ядрами планет и звезд, определяются движением и взаимодействием друг с другом частиц, из которых состоят все тела: молекул, атомов, элементарных частиц. Непосредственным доказательством существования хаотического движения молекул служит броуновское движение, которое заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного беспорядочного движения, не зависящего от внешних причин. Оно оказывается проявлением внутреннего движения, совершаемого под влиянием беспорядочных ударов молекул. Количественным воплощением молекулярно-кинетических представлений служат газовые законы Бойля-Мариотта, Гей-Люссака, Авагадро, Дальтона, уравнение Клайперона-Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др. Из основного уравнения молекулярно-кинетической теории вытекает важный вывод: средняя кинетическая энергия поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее: Е = 3/2 k Т, где k – постоянная Больцмана; Т – температура. Из данного уравнения следует, что при Т = 0 средняя кинетическая энергия равна нулю, т.е. при абсолютном нуле прекращается поступательное движение молекул газа, а, следовательно, его давление равно нулю. Термодинамическая температура – мера кинетической энергии поступательного движения идеального газа, а приведенная формула раскрывает молекулярно-кинетическое толкование температуры. В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой: · собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда; · между молекулами газа отсутствуют силы взаимодействия; · столкновение молекул газа между собой и со стенками сосуда абсолютно упругие; · длина свободного пробега молекул << размеров сосуда. Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным (например, кислород и гелий), а также при низких давлениях и высоких температурах они близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов, из которых следует уравнение Ван-дер-Вальса, описывающее состояние реального газа. Первое положение молекулярно-кинетических представлений – любое тело состоит из большого числа весьма малых частиц – молекул – доказано многочисленными опытами, одновременно подтверждавшими реальное существование молекул и атомов. А теперь их рассмотрим визуально, приведем некоторые цифры, показывающие, насколько малы размеры молекул и атомов и как много их содержится в каком-либо макроскопическом теле. С помощью ионного микроскопа удалось показать, что диаметр атомов вольфрама составляет около 2 ангстрем (1 ангстрем равен
Контрольные вопросы 1. Какие явления называются тепловыми? 2. В чем заключается история развития представлений о природе тепловых явлений? 3. Что изучает термодинамика? 4. В чем заключается смысл первого начала термодинамики? 5. Опишите второе начало термодинамики. 6. Что такое энтропия и каковы ее важнейшие свойства? 7. В чем смысл тепловой смерти Вселенной? 8. Как взаимодействует порядок и хаос в природе? 9. Что изучает молекулярная физика? 10. Каковы основные положения молекулярно-кинетических представлений?
|