Правкой называется операция по устранению дефектов заготовок и деталей в виде вогнутости, выпуклости, волнистости, коробления, искривления и т. д. Ее сущность заключается в сжатии выпуклого слоя металла и расширении.вогнутого.
Металл подвергается правке как в холодном, так и в нагретом состоянии. Выбор того или иного способа правки зависит от величины прогиба, размеров и материала заготовки (детали).
Правка может быть ручной (на стальной или чугунной правильной плите) или машинной (на правильных вальцах или прессах).
Правильная плита, так же как и разметочная, должна быть массивной. Ее размеры могут быть от 400X400 мм до 1500Х Х3000 мм. Устанавливаются плиты на металлические или деревянные подставки, обеспечивающие устойчивость плиты и горизонтальность ее положения.
Для правки закаленных деталей (рихтовки) используют рихтовальные бабки. Они изготовляются из стали и закаливаются. Рабочая поверхность бабки может быть цилиндрической или сферической радиусом 150—200 мм.
Ручную правку производят специальными молотками с круглым, радиусным или вставным из мягкого металла бойком. Тонкий листовой металл правят киянкой (деревянным молотком).
При правке металла очень важно правильно выбрать места, по которым следует наносить удары. Силу удара необходимо соизмерять с величиной кривизны металла и уменьшать по мере перехода от наибольшего прогиба к наименьшему.
При большом изгибе полосы на ребро удары наносят носком молотка для односторонней вытяжки (удлинения) мест изгиба.
Полосы, имеющие скрученный изгиб, правят методом раскручивания. Проверяют правку «на глаз», а при высоких требованиях к прямолинейности полосы — лекальной линейкой или на проверочной плите.
Металл круглого сечения можно править на плите или на наковальне. Если-пруток имеет несколько изгибов, то правят сначала крайние, а затем расположенные в середине.
Наиболее сложной является правка листового металла. Лист кладут на плиту выпусклостью вверх. Удары наносят молотком от края листа по направлению к выпуклости. Под действием ударов ровная часть листа будет вытягиваться, а выпуклая выправляться.
При правке закаленного листового металла наносят несильные, но частые удары носком молотка по направлению от вогнутости к ее краям. Верхние слои металла растягиваются, и деталь выпрямляется.
Валы и круглые заготовки большого сечения правят с помощью ручного винтового или гидравлического пресса.
По приемам работы и характеру рабочего процесса к правке металлов очень близко стоит другая слесарная операция — гибка металлов. Гибка металлов применяется для придания заготовке изогнутой формы согласно чертежу. Сущность ее заключается в том, что одна часть заготовки перегибается по отношению к другой на какой-либо заданный угол. Напряжения изгиба должны превышать предел упругости, а деформация заготовки должна быть пластической. Только в этом случае заготовка сохранит приданную ей форму после снятия нагрузки.
Ручную гибку производят в тисках с помощью слесарного молотка и различных приспособлений. Последовательность выполнения гибки зависит от размеров контура и материала заготовки.
Гибку тонкого листового металла производят киянкой. При использовании для гибки металлов различных оправок их форма должна соответствовать форме профиля детали с учетом деформации металла.
Выполняя гибку заготовки, важно правильно определить ее размеры. Расчет длины заготовки выполняют по чертежу с учетом радиусов всех изгибов. Для деталей, изгибаемых под прямым углом без закруглений с внутренней стороны, припуск заготовки на изгиб должен составлять от 0,6 до 0,8 толщины металла.
При пластической деформации металла в процессе гибки нужно учитывать упругость материала: после снятия нагрузки угол загиба несколько увеличивается.
Изготовление деталей с очень малыми радиусами изгиба связано с опасностью разрыва наружного слоя заготовки в месте изгиба. Размер минимально допустимого радиуса изгиба зависит от механических свойств материала заготовки, от технологии гибки и качества поверхности заготовки (см. табл. 6 приложения 2). Детали с малыми радиусами закруглений необходимо изготовлять из пластичных материалов или предварительно подвергать отжигу.
При изготовлении изделий иногда возникает необходимость в получении криволинейных участков труб, изогнутых под различными углами. Гибке могут подвергаться цельнотянутые и сварные трубы, а также трубы из цветных металлов и сплавов.
Гибку труб производят с наполнителем (обычно сухой речной песок) или без него. Это зависит от материала трубы, ее диаметра и радиуса изгиба. Наполнитель предохраняет стенки трубы от образования в местах изгиба складок и морщин (гофров).
§ 7. Рубка металлов
Рубкой называется операция, при которой с помощью зубила и слесарного молотка с заготовки удаляют слои металла или разрубают заготовку.
Физической основой рубки является действие клина, форму которого имеет рабочая (режущая) часть зубила. Рубка применяется в тех случаях, когда станочная обработка заготовок трудно выполнима или нерациональна.
С помощью рубки производится удаление (срубание) с заготовки неровностей металла, снятие твердой корки, окалины, острых кромок детали, вырубание пазов и канавок, разрубание листового металла на части.
Рубка производится, как правило, в тисках. Разрубание листового материала на части -может выполняться на плите.
Основным рабочим (режущим) инструментом при рубке является зубило, а ударным — молоток.
Слесарное зубило (11) изготовляется из инструментальной углеродистой стали. Оно состоит из трех частей: ударной, средней и рабочей. Ударная часть / выполняется суживающейся кверху, а вершина ее (боек) —закругленной; за среднюю часть 2 зубило держат во время рубки; рабочая (режущая) часть 3 имеет клиновидную форму. Угол заострения выбирается в зависимости от твердости обрабатываемого материала.
Для наиболее распространенных материалов рекомендуются следующие углы заострения: для твердых материалов (твердая сталь, чугун) — 70°; для материалов средней твердости (сталь) ~ 60°; для мягких материалов (медь, латунь) '— 45°; для алюминиевых сплавов — 35°.
Рабочая и ударная части зубила подвергаются термической обработке (закалке и отпуску). Степень закалки зубила можно определить, проведя напильником по закаленной части зубила: если напильник не снимает стружку, а скользит по поверхности, закалка выполнена хорошо.
Для вырубания узких пазов и канавок пользуются зубилом с узкой режущей кромкой — крейцмейселем. Такое зубило может применяться и для снятия широких слоев металла: сначала прорубают канавки узким зубилом, а оставшиеся выступы срубают широким зубилом.
Для вырубания профильных канавок (полукруглых, двугранных и др.) применяются специальные крейцмейсели— канавочники, отличающиеся только формой режущей кромки.
Слесарные молотки, используемые при рубке металлов бывают двух типов: с круглым и с квадратным бойком. Основной характеристикой молотка является его масса. Для рубки металлов применяют молотки массой от 400 до 600 г.
Рубка металлов — операция очень трудоемкая. Для облегчения труда и повышения его производительности используют механизированные инструменты. Среди них наибольшее распространение имеет пневматический рубильный молоток (12) Он приводится в действие сжатым воздухом, который подается по шлангу 3 от постоянной пневмосети или передвижного компрессора. При рубке металла нажимают курок 2, отжимающий золотник 4. Воздух, попадая через воздухопроводящие каналы, перемещает боек 6, который ударяет по хвостовищу зубила 7, вставленному в ствол 5. Во время рубки пневматический рубильный молоток держат обеими руками: правой — за рукоятку левой — за конец ствола, и направляют зубило по линии рубки.
§ 8. Резка металлов
В зависимости от формы и размеров материала заготовок или деталей разрезание при ручной обработке металла осуществляют с помощью ручного или механизированного инструмента-острогубцами, ручными и электрическими ножницами, ручными и пневматическими ножовками, труборезами.
Сущность операции разрезания металла острогубцами (кусачками) и ножницами заключается в разделении проволоки, листового или полосового металла на части под давлением двух движущихся навстречу друг другу клиньев (режущих ножей).
Режущие кромки у острогубцев смыкаются одновременно по всей длине. У ножниц же сближение лезвий идет постепенно от одного края к другому. Их режущие кромки не. смыкаются а сдвигаются одно относительно другой. И острогубцы, и ножницы представляют собой шарнирное соединение двух рычагов, у которых длинные плечи выполняют роль рукояток, а короткие — режущих ножей.
Острогубцы (кусачки) используют, главным образом, для разрезания проволоки. Угол заострения режущих кромок острогубцев может быть различным в зависимости от твердости разрезаемого материала. У многих острогубцев он равен 55—60°
Ручные ножницы (13) применяют для разрезания листов-стальных толщиной 0,5—1,0 мм и из цветных металлов толщиной до 1,5 мм.
В зависимости от устройства режущих ножей ножницы делятся так: прямые (13, а) —с прямыми режущими ножами, предназначенные в основном для разрезания металла по прямой линии или по окружности большого радиуса; кривые (13, б) —с криволинейными ножами; пальцевые (13, в) —с узкими режущими ножами для вырезания в листовом металле отверстий и поверхностей с малыми радиусами.
По расположению режущих ножей ножницы делятся на правые и левые. У правых ножниц скос режущей кромки нижнего ножа находится справа, у левых — слева.
Стуловые ножницы (13, г) отличаются от обычных ручных большими размерами и применяются для разрезания листового металла толщиной до 2 мм.
Рычажные ножницы (13, д) применяются для разрезания листовой стали толщиной до 4 мм (цветных металлов — до б мм). Верхний шарнирно закрепленный нож 3 приводится в действие от рычага 2. Нижний нож /закреплен неподвижно.
Для механизации тяжелого и трудоемкого процесса разрезания листового металла применяют, как уже отмечалось, электрические ножницы.
Электрические ножницы С-424 (14) состоят из электродвигателя 4, редуктора 1 с эксцентриком 5 и рукоятки 3. Возвратно-поступательное движение от эксцентрика передается верхнему ножу #. Нижний нож 7 закреплен на скобе 6.
Ручная ножовка () применяется для разрезания сравнительно толстых листов металла и круглого или профильного проката. Ножовкой можно производить также прорезание шлицев, пазов, обрезку и вырезку заготовок по контуру и другие работы. Она состоит из рамки /.натяжного винта с барашковой тайкой 2, рукоятки ножовочного полотна 4, которое вставляется в прорези головок 3 и крепится штифтами 5.
Ножовочные рамки изготовляют двух типов: цельные (для ножовочного полотна одной определенной длины) и раздвижные (можно закреплять ножовочные полотна разной длины).
Ножовочное полотно (режущая часть ножовки) представляет собой тонкую и узкую стальную пластину с зубьями на одном из ребер. Его изготовляют из инструментальной или быстрорежущей стали. Длина наиболее распространенных ножовочных полотен составляет 250—300 мм. Каждый зуб полотна имеет форму клина (резца). На нем, как и на резце, различают задний угол а, угол заострения р, передний угол у и угол резания 6==a + p (15, б): При насечке зубьев учитывают то, что образующаяся стружка должна помещаться между зубьями до их выхода из пропила. В зависимости от твердости разрезаемых материалов углы зуба полотна могут быть: 7=0—12°, (3=43 — 60° и а=35-4О0.
Для разрезания более твердых материалов угол заострения (3 делают больше, для мягких — меньше. Чтобы ширина разреза, сделанного ножовкой, была немного больше толщины полотна, выполняет разводку зубьев «по зубу» (15, в), или «по полотну» (). Это предотвращает заклинивание полотна и облегчает работу.
Более высокая производительность труда достигается при использовании пневматической ножовки.
Разрезание стальных труб сравнительно больших диаметров — операция трудоемкая, поэтому для ее выполнения применяют специальные труборезы.
Труборез (16) состоит из скобы /, двух неподвижных роликов 2, подвижного ролика (резца) 3 и рукоятки 4. Труборез надевают "на трубу, закрепленную в тисках или приспособлении, вращением рукоятки придвигают подвижный ролик до соприкосновения с поверхностью трубы. Затем, поворачивая за рукоятку весь труборез вокруг трубы и постепенно поджимая воротком подвижный ролик, разрезают трубу.
§ 9. Опиливание металлов
Опиливанием называется слесарная операция, при которой снимают слои материала с поверхности заготовки с помощью напильника.
Напильник — это многолезвийный режущий инструмент, обеспечивающий сравнительно высокую точность и малую шероховатость обрабатываемой поверхности заготовки (детали).
Опиливанием придают детали требуемую форму и размеры, пригоняют детали друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами, и т. д.
Припуски на опиливание оставляют небольшие — от 0,5 до 0,025 мм. Погрешность при обработке может быть от 0,2 до 0,05 мм и в отдельных случаях — до 0,005 мм.
Напильник () представляет собой стальной брусок определенного профиля и длины, на поверхности которого' имеется насечка (нарезка). Насечка образует мелкие и остро-заточенные зубья, имеющие в сечении форму клина. Для напильников с насеченным зубом угол заострения обычно равен 70°, передний угол (у) — до 16°, задний угол (а) — от 32 до 40°.
Напильники с одинарной насечкой снимают широкую стружку по длине всей насечки. Их применяют при опиливании мягких металлов.
Напильники с двойной насечкой используют при опиливании стали, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.
Рашпильную насечку получают вдавливанием металла специальными трехгранными зубилами. Полученные при образовании зубьев вместительные выемки способствуют лучшему размещению стружки. Рашпилями обрабатывают очень мягкие металлы и неметаллические материалы.
Дуговую насечку получают фрезерованием. Она имеет дугообразную форму и большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.
Изготовляются напильники из стали У13 или У13А, а также из хромистой стали ШХ15 и 13Х. После насечки зубьев напильники подвергают термической обработке.
Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород).
По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машинные напильники. Для общеслесарных работ применяют напильники общего назначения.
По числу насечек на 1 см длины напильники подразделяют на 6 номеров.
Напильники с насечкой № 0 и 1 (драчевые) имеют наиболее крупные зубья и служат для грубого (чернового) опиливания с погрешностью 0,5—0,2 мм.
Напильники с насечкой № 2 и 3 (личные) служат для чистового опиливания деталей с погрешностью 0,15—0,02 мм.
Напильники с насечкой № 4 и 5 (бархатные) применяются для окончательной точной отделки изделий. Погрешность при обработке — 0,01—0,005 мм.
По длине напильники могут изготовляться от 100 до 400 мм. По форме поперечного сечения они подразделяются на плоские, квадратные, трехгранные, круглые, полукруглые, ромбические и ножовочные.
Для обработки мелких деталей служат малогабаритные напильники — надфили. Они изготовляются пяти номеров с числом насечек на 1 см длины от 20 до 112.
Обработку закаленной стали и твердых сплавов производят специальными надфилями, на стальном стержне которых закреплены зерна искусственного алмаза.
Улучшение условий и повышение производительности труда при опиливании металла достигается путем применения механизированных (электрических и пневматических) напильников.
Рассмотрим устройство универсальной шлифовальной машинки, которая широко используется в современном производстве. Универсальная шлифовальная машинка, работающая от асинхронного электродвигателя, имеет шпиндель, к которому крепится гибкий вал 2 с державкой (головкой) 3 для закрепления рабочего инструмента. Сменные прямые и угловые головки позволяют с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.
Качество опиливания контролируют самыми различными инструментами. Правильность опиливаемой плоскости проверяют поверочной линейкой «на просвет». Если плоская поверхность должна быть опилена особенно точно, ее проверяют с помощью поверочной плиты «на краску». В том случае, если плоскость должна быть опилена под определенным углом к другой смежной плоскости, контроль осуществляется с помощью угольника или угломера. Для проверки параллельности двух плоскостей пользуются штангенциркулем или кронциркулем.
Расстояние между параллельными плоскостями в любом месте должно быть одинаковым.
Контроль криволинейных обрабатываемых поверхностей производят по линиям разметки или с помощью специальных шаблонов.
§ 10. Сверление, зенкование, зенкерование и развертывание отверстий
В работе слесаря по изготовлению, ремонту или сборке деталей механизмов и машин часто возникает необходимость получения в этих деталях самых различных отверстий. Для этого производят операции сверления, зенкования, зенкерования и развертывания отверстий.
Сущность данных операций заключается в том, что процесс резания (снятия слоя материала) осуществляется вращательным и поступательным движениями режущего инструмента (сверла, зенкера и т. д.) относительно своей оси. Эти движения создаются с помощью ручных (коловорот, дрель) или механизированных (электрическая дрель) приспособлений, а также станков (сверлильных, токарных и т.д.).
Сверление—это один из видов получения и обработки отверстий резанием с помощью специального инструмента— сверла.
Как и любой другой режущий инструмент, сверло работает по принципу клина. По конструкции и назначению сверла делятся на перовые, спиральные, центровочные и др. В современном производстве применяются преимущественно спиральные сверла и реже специальные виды сверл.
Спиральное сверло () состоит из рабочей части, хвостовика и шейки. Рабочая часть сверла, в свою очередь, состоит из цилиндрической (направляющей) и режущей частей.
На направляющей части расположены две винтовые канавки, по которым отводится стружка в процессе резания.
Направление винтовых канавок обычно правое. Левые сверла применяются очень редко. Вдоль канавок на цилиндрической части, сверла имеются узкие полосочки, называемые ленточками. Они служат для уменьшения трения сверла о стенки отверстия (сверла диаметром 0,25—0,5 мм выполняются без ленточек).
Режущая часть сверла образуется двумя режущими кромками, расположенными под определенным углом друг к другу. Этот угол называют углом при вершине. Его величина зависит от свойств обрабатываемого материала. Для стали и чугуна средней твердости он составляет 116—118°.
Хвостовик предназначен для закрепления сверла в сверлильном патроне или шпинделе станка и может быть цилиндрической или конической формы. Конический хвостовик имеет на' конце лапку, которая служит упором при выталкивании сверла из
гнезда.
Шейка сверла, соединяющая рабочую часть с хвостовиком, служит для выхода абразивного круга в процессе шлифования сверла при его изготовлении. На шейке обычно обозначают марку сверла.
Изготовляются сверла преимущественно из быстрорежуще стали марок Р9, Р18, Р6М5 и др. Все шире применяются ме таллокерамические твердые сплавы марок ВК6, ВК8 и Т15К6 Пластинками из твердых сплавов обычно оснащают только рабочую (режущую) часть сверла.
В процессе работы режущая кромка сверла притупляется поэтому сверла периодически затачивают.
Сверлами производят не только сверление глухих (засверливание) и сквозных отверстий, т.е. получение этих отверстий в сплошном материале, но и рассверливание — увеличение размера (диаметра) уже полученных отверстий.
Зенкованием называется обработка верхней части отверстий в целях получения фасок ил цилиндрических углублений, например, под потайную головку винта или заклепки. Выполняется зенкование с помощью зенковок (20, а, б) ил! сверлом большего диаметра; Зенкерование — это обработка отверстий, полученных; литьем, штамповкой или сверлением, для придания им цилиндрической формы, повышения точности и качества поверхности. Зенкерование выполняется специальными инструментами— зенкерами (20, в). Зенкеры могут быть с режущими кромками на цилиндрической или конической поверхности (цилиндрические и конические зенкеры), а также с режущими кромками, расположенными на торце (торцовые зенкеры). Для обеспечения соосности обрабатываемого отверстия и зенкера на торце зенкера иногда делают гладкую цилиндрическую направляющую часть.
Зенкерование может быть процессом окончательной обработки или подготовительным к развертыванию. В последнем случае при зенкеровании оставляют припуск на дальнейшую обработку.
Развертывание — это чистовая обработка отверстий. По своей сущности она подобна зенкерованию, но обеспечивает более высокую точность и малую шероховатость обработки поверхности отверстий. Выполняется эта операция слесарными (ручными) или станочными (машинными) развертками. Развертка (20, г) состоит из рабочей части, шейки и хвостовика. Рабочая часть подразделяется на заборную, режущую (коническую) и калибрующую части. Калибрующая часть ближе к шейке имеет обратный конус (0,04—0,6) для уменьшения трения развертки о стенки отверстия. Зубья на рабочей части (винтовые или прямые) могут быть расположены равномерно по окружности или неравномерно. Развертки с неравномерным шагом зубьев используются обычно для обработки отверстий вручную. Они позволяют избежать образования так называемой огранки, т.е. получения отверстий неправильной цилиндрической формы. Хвостовик ручной развертки имеет квадрат для установки воротка. Хвостовик машинных разверток диаметром до 10 мм выполняется цилиндрическим, других разверток — коническим с лапкой, как у сверл.
Для черновой и чистовой обработки отверстия применяют комплект (набор) разверток, состоящий из двух-трех штук. Изготовляют развертки из тех же материалов, что и другие режущие инструменты для обработки отверстий.
Рассмотренные операции обработки отверстий выполняются в основном на сверлильных или токарных станках. Однако, в тех случаях, если деталь невозможно установить на станок или отверстия расположены в труднодоступных местах, обработка производится вручную с помощью воротков, ручных или механизированных (электрических и пневматических) дрелей.
Вороток с квадратными отверстиями используют при работе инструментом, имеющим на хвостовике квадрат, например ручной разверткой.
Ручная дрель (121) состоит из остова с упором /, который нажимают, чтобы придать сверлу поступательное движение, зубчатой передачи 2 с ручным приводом 3, рукоятки для держания дрели 6, шпинделя А установленным на нем патроном 4 для закрепления режущего инструмента.
В целях облегчения труда при обработке отверстий и повышения его производительности используют механизированные дрели (ручные сверлильные машинки). Они могут быть электрическими или пневматическими. В практике работы в учебных мастерских более широкое; применение имеют электрические дрели, так как пневматические требуют подвода к ним сжатого воздуха.
Электрические сверлильные машинки изготовляются трех типов: легкого, среднего и тяжелого. Машинки легкого типа предназначены для сверления отверстий диаметром до 8—9 мм. Корпус таких машинок часто выполняется в форме пистолета.
Машинки среднего типа обычно имеют замкнутую рукоятку; на задней части корпуса. Они используются для сверления отвёрстий диаметром до 15 мм.
Машинки тяжелого типа применяют для получения и обработки отверстий диаметром 20—30 мм. Они имеют две рукоятки на корпусе (или две рукоятки и упор) для удержания машинки и nepeдачи поступательного движения рабочему инструменту.
В цехах индивидуального и мелкосерийного производства" наибольшее распространение получили вертикально-сверлильные станки.
Рассмотрим устройство вертикально-сверлильных станков на примере станка типа 2А135 (22). Этот станок предназначен для сверления и рассверливания глухих и сквозных отверстий диаметром до 35 мм, а также зенкования, зенкерования, развертывания отверстий и нарезания резьбы.
Он имеет станину 8, в верхней части которой установлена шпиндельная головка 5;. Внутри коробки головки расположена коробка скоростей, передающая вращение от электродвигателя 6 на шпиндель 3. Осевое перемещение инструмента производится при помощи коробки подач 4, установленной на станине. Обрабатываемая заготовка закрепляется на столе 2, который может подниматься и опускаться при помощи рукоятки 9, что дает возможность обрабатывать заготовки различной высоты. Смонтирован станок на плите
При работе на сверлильных станках применяют различные приспособления для закрепления заготовок и режущего инструмента.
Машинные т и с к и — приспособление для закрепления заготовок разного профиля. Они могут иметь сменные губки для зажима деталей сложной формы.
П р и з м ы служат для закрепления цилиндрических заготовок.
В сверлильных патронах закрепляют режущие инструменты с цилиндрическими хвостовиками.
С помощью переходных втулок устанавливают режущие инструменты, у которых размер конуса хвостовика меньше размера конуса шпинделя станка.
На сверлильных станках могут выполняться все основные операции по получению и обработке отверстий сверлением, зенкованием, зенкерованием и развертыванием.
Для настройки станка на тот или иной вид обработки отверстий важно правильно установить скорость резания и подачу.
Скоростью резания (м/мин) при сверлении называют величину пути, проходимого в направлении главного движения наиболее отдаленной от оси инструмента точкой режущей кромки в единицу времени.
Скорость резания выбирают в зависимости от свойств обрабатываемого материала, диаметра, материала и формы заточки режущей части инструмента и других факторов.
В соответствии с полученной частотой вращения инструмента устанавливается частота вращения шпинделя станка.
Подача — это величина перемещения режущего инструмента относительно заготовки вдоль его оси за один оборот. Она измеряется в миллиметрах за один оборот (мм/об).
Значения подач также зависят от свойств обрабатываемого материала, материала сверла и других факторов.
При определении скорости резания и подачи учитывается глубина резания. Глубина резания t при сверлении и других видах обработки отверстий — это расстояние между обработанной и обрабатываемой поверхностями, измеренное перпендикулярно оси заготовки.
Поскольку глубина резания при обработке отверстий — величина относительно неизменная (заданная чертежом или припуском на обработку), то основное влияние на производительность обработки будут оказывать выбираемые значения скорости резания и подачи.
С увеличением скорости резания процесс обработки ускоряется. Но при работе со слишком большими скоростями режущие кромки инструмента быстро затупляются и его приходится часто затачивать. Увеличение подачи тоже повышает производительность обработки, но при этом обычно увеличивается шероховатость поверхности отверстия и затупляется режущая кромка.
Таким образом, повышение производительности обработки зависит прежде всего от стойкости инструмента, т. е. от времени его работы до затупления. Задача состоит в том, чтобы выбрать такие оптимальные значения скорости резания и подачи, чтобы обеспечивалась, с одной стороны, необходимая стойкость инструмента и, с другой стороны, высокая производительность обработки и требуемая шероховатость поверхности отверстия.
§ 11. Нарезание резьбы
Приемы нарезания резьбы, и особенно применяемый при этом режущий инструмент, во многом зависят от вида и профиля резьбы.
Резьбы бывают однозаходные, образованные одной винтовой линией (ниткой), или многозаходные, образованные двумя и более нитками.
По направлению винтовой линии резьбы подразделяют на правые и левые.
Профилем резьбы называется сечение ее витка плоскостью, проходящей через ось цилиндра или конуса, на котором выполнена резьба..
Для нарезания резьбы важно знать основные ее элементы: шаг, наружный, средний и внутренний диаметры и форму профиля резьбы (23).
Шагом резьбы S называют расстояние между двумя одноименными точками соседних профилей резьбы, измеренное параллельно оси резьбы.
Наружный диаметр d — наибольшее расстояние между крайними наружными точками, измеренное в направлении, перпендикулярном оси резьбы.
Внутренний диаметр di — наименьшее расстояние между крайними внутренними точками резьбы, измеренное в направлении, перпендикулярном оси.
Средний диаметр di — расстояние между двумя противоположными параллельными боковыми сторонами профиля резьбы, измеренное в направлении, перпендикулярном оси.
Основание резьбы Вершина резьбы
По форме профиля резьбы подразделяют на треугольные, прямоугольные, трапецеидальные, упорные (профиль в виде неравнобокой трапеции) и круглые.
В зависимости от системы размеров резьбы делятся на метрические, дюймовые, трубные и др.
В метрической резьбе угол треугольного профиля ф равен 60°, наружный, средний и внутренний диаметры и шаг резьбы выражаются в миллиметрах. Пример обозначения: М20Х Х1.5 (первое число—наружный диаметр, второе — шаг).
Трубная резьба отличается от дюймовой тем, что ее исходным размером является не наружный диаметр резьбы, а диаметр отверстия трубы, на наружной поверхности которой нарезана резьба. Пример обозначения: труб. 3/У' (цифры — внутренний диаметр трубы в дюймах).
Нарезание резьбы производится на сверлильных и специальных резьбонарезных станках, а также вручную.
При ручной обработке металлов внутреннюю резьбу нарезают метчиками, а наружную — плашками.
Метчики по назначению делятся на ручные, машинно-ручные и машинные, а в зависимости от профиля нарезаемой резьбы — на три типа: для метрической, дюймовой и трубной резьб.
Метчик (24) состоит из двух основных частей: рабочей части и хвостовика. Рабочая часть представляет собой винт с несколькими продольными канавками и служит для непосредственного нарезания резьбы. Рабочая часть, в свою очередь, состоит из заборной (режущей) и направляющей (калибрующей) частей. Заборная (режущая) часть производит основную работу при нарезании резьбы и изготовляется обычно в виде конуса. Калибрующая (направляющая) часть, как видно из самого названия, направляет метчик и калибрует отверстие.
Продольные канавки служат для образования режущих перьев с режущими кромками и размещения стружки в процессе нарезания резьбы.
Хвостовик метчика служит для закрепления его в патроне или в воротке во время работы.
Для нарезания резьбы определенного размера ручные (слесарные) метчики выполняют обычно в комплекте из трех штук. Первым и вторым метчиками нарезают резьбу предварительно, а третьим придают ей окончательный размер и форму. Номер каждого метчика комплекта отмечен числом рисок на хвостовой части. Существуют комплекты из двух метчиков: предварительного (чернового) и чистового.
Изготовляют метчики из углеродистой, легированной или быстрорежущей стали.
При нарезании резьбы метчиком важно правильно выбрать диаметр сверла для получения отверстия под резьбу. Диаметр отверстия должен быть несколько больше внутреннего диаметра резьбы, так как материал при нарезании будет частично выдавливаться по направлению к оси отверстия. Размеры отверстия под резьбу выбирают по таблицам.
Плашки, служащие для нарезания наружной резьбы, в зависимости от конструкции подразделяются на круглые и призматические (раздвижные).
Круглая плашка (25, а) представляет собой цельное или разрезанное кольцо с резьбой на внутренней поверхности и канавками, которые служат для образования режущих кромок и выхода стружки. Диаметр разрезных плашек можно регулировать в небольших пределах. Это позволяет восстанавливать их размер после изнашивания и удлинять срок службы плашек.
Круглые плашки при нарезании резьбы закрепляют в специальном воротке-плашкодержателе (25, б).
Призматические (раздвижные) плашки (25, в) в отличие от круглых состоят из двух половинок, называемых полуплашками. На каждой из них указаны размеры резьбы и цифра 1 или 2 для правильного закрепления в специальном приспособлении (клуппе). Угловые канавки (пазы) на наружных сторонах полуплашек служат для установки их в соответствующие выступы клуппа. Изготавливают плашки из тех же материалов, что и метчики.
При нарезании наружной резьбы также важно определить диаметр стержня под резьбу, так как и в этом случае происходит некоторое выдавливание металла и увеличение наружного диаметра образовавшейся резьбы по сравнению с диаметром стержня. Диаметр под резьбу выбирают по специальным таблицам.
§ 12. Внутреннее строение и свойства металлов и сплавов
К машиностроительным материалам относятся металлы и их сплавы, древесина, пластмассы, резина, картон, бумага, стекло и др. Наибольшее применение при изготовлении машин получили металлы и их сплавы.
Металлами называются вещества, обладающие высокой теплопроводностью и электрической проводимостью; ковкостью, блеском и другими характерными свойствами.
В технике все металлы и сплавы принято делить на черные и цветные. К черным металлам относятся железо и сплавы на его основе. К цветным — все остальные металлы и сплавы. Для того чтобы правильно выбрать материал для изготовления деталей машин с учетом условий их эксплуатации, механических нагрузок и других факторов, влияющих на работоспособность и надежность машин, необходимо знать внутреннее строение, физико-химические, механические и технологические свойства металлов.
Металлы и их сплавы в твердом состоянии имеют кристаллическое строение. Их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке и образуют пространственную кристаллическую решетку.
Наименьший комплекс атомов, который при многократном повторении в пространстве воспроизводит решетку, называется элементарной кристаллической ячейкой.
Форма элементарной кристаллической ячейки определяет совокупность свойств металлов: блеск, плавкость, теплопроводность, электропроводность, обрабатываемость и анизотропность (различие свойств в различных плоскостях кристаллической решетки).
Пространственные кристаллические решетки образуются при переходе металла из жидкого состояния в твердое. Этот процесс называется кристаллизацией. Процессы кристаллизации впервые были изучены русским ученым Д. К- Черновым.
Кристаллизация состоит из двух стадий. В жидком состоянии металла его атомы находятся в непрерывном движении. При понижении температуры движение атомов замедляется, они сближаются и группируются в кристаллы. Образуются так называемые центры кристаллизации (первая стадия). Затем идет роет кристаллов вокруг этих центров (вторая стадия). Вначале кристаллы растут свободно. При дальнейшем росте кристаллы отталкиваются, рост одних кристаллов мешает росту соседних, в результате чего образуются неправильной формы группы кристаллов, которые называют зернами.
Размер зерен существенно влияет на эксплуатационные и технологические, свойства металлов. Крупнозернистый металл имеет низкую сопротивляемость удару, при его обработке резанием возникает трудность в получении малой шероховатости поверхности деталей. Размеры зерен зависят от природы самого металла и условий кристаллизации.
Методы изучения структуры металла. Исследование структур металлов и сплавов производится с помощью макро- и микроанализа, а также другими способами.
Методом макроанализа изучается макроструктура, т. е. строение металла, видимое невооруженным глазом или с помощью лупы. М
Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...
Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...
Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...
Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и регистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...