Строение и функции клеточных мембран.
Основным свойством живых клеток является раздражимость, т. е. их способность реагировать изменением обмена веществ в ответ на действие раздражителей. Возбудимость — свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нервные, мышечные и некоторые секреторные клетки. Возбуждение — ответ ткани на ее раздражение, проявляющийся в специфической для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (генерация потенциала действия, метаболические изменения). Cвойства возбудимых тканей. 4 свойства: возбудимость, проводимость, рефрактерность, лабильность. Для мышечной ткани характерна также сократимость. Возбудимость – способность ткани отвечать на раздражение изменением ряда своих свойств. Показатель возбудимости – порог раздражения. Это минимальное по силе раздражение, способное вызвать видимую ответную реакцию ткани. Проводимость – способность ткани проводить возбуждение по всей своей длине. Показатель проводимости – скорость проведения возбуждения. Рефрактерность – способность ткани терять или снижать возбудимость в процессе возбуждения. При этом в ходе ответной реакции ткань перестает воспринимать раздражитель. Лабильность – способность ткани генерировать определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимого раздражения. Лабильность определяется продолжительностью рефрактерного периода (чем короче рефрактерный период, тем больше лабильность). Сократимость – способность мышцы отвечать сокращением на раздражение. Раздражитель – фактор, способный вызвать ответную реакцию возбудимых тканей. В условиях физиологического эксперимента в качестве раздражителя чаще всего используют электрический ток. Хронаксия – наименьший промежуток времени, в течение которого ток силой в 2 реобазы (пороговая сила раздражителя для электрического тока) вызывает в ткани возбуждение. Различают два вида биологических реакций: специфические и неспецифические. Специфические реакции характерны для какой-то строго определенной ткани Все многообразие раздражителей можно выделить в отдельные группы. Классификация раздражителей зависит от того, что берется за основу: По своей природе раздражители бывают: 1) химические; 2) физические; 3) механические; 4) термические; 5) биологические. Строение и функции клеточных мембран. 1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам. 2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»). 3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах). 4.Высвобождение нейромедиаторов в синаптических окончаниях. Строение и функции ионных каналов. Ионы Na+, K+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5—0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны. Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость. Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы). Пассивный транспорт -. Простая диффузия -. Осмос - Диффузия ионов - Облегченная диффузия Активный транспорт - Первично-активный транспорт -. Вторично-активный транспорт Потенциа́л поко́я (ПП) — мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ.У нейронов и нервных волокон обычно составляет -70 мВ. Измеряется изнутри клетки. Согласно теории Ю. Бернштейна, при возбуждении клетки её мембрана повреждается, и ионы К+ вытекают из клетки по концентрационному градиенту до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя. Это утверждение, относящееся скорее к потенциалу действия, было опровергнуто Ходжкином и Хаксли в 1939 году. ПП формируется в два этапа. Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na+ на K+ в соотношении 3: 2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ, обеспечивает его электрогенность. Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы: 1. Дефицит ионов натрия (Na+) в клетке. 2. Избыток ионов калия (K+) в клетке. 3. Появление на мембране слабого электрического потенциала (-10 мВ). Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K+. Ионы калия K+ покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ. Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса. Потенциа́л де́йствия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд — быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль. Фазы потенциала действия Предспайк — процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ). Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны). Отрицательный следовой потенциал — от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация). Положительный следовой потенциал — увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация). Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны. При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный. Компоненты потенциала действия: 1) локальный ответ; 2) высоковольтный пиковый потенциал (спайк); 3) следовые колебания. Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Высоковольтный пиковый потенциал (спайк). Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз: 1) восходящей части – фазы деполяризации; 2) нисходящей части – фазы реполяризации. Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K. Полного восстановления мембранного потенциала не происходит. В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Распространение локальных потенциалов Локальный потенциал изменяет ПП в сторону деполяризации в результате входа в клетку Na+ согласно электрохимическому градиенту. В результате между деполяризованными и соседними участками волокна формируется градиент, вызывающий передвижение ионов Na+ в соседние участки волокна, а ионы на наружной поверхности волокна движутся в противоположном направлении. В итоге поляризация соседнего участка уменьшается. Затухание локального потенциала связано с отсутствием потенциалзависимых Na+ - каналов или их неактивацией, с продольным сопротивлением цитоплазмы волокна и шунтированием тока во внеклеточную среду через каналы утечки. Деполяризация мембраны, не сопровождающаяся изменением проницаемости потенциалзависимых Na+ - и К+ - каналов, называется электротонической. Она характерна для участков, где такие каналы отсутствуют: большая часть мембраны дендритов, межперехватные промежутки миелиновых волокон. Если электротоническая деполяризация достигает участков с потенциалзависимыми каналами, но его амплитуда не достигает порогового значения, формируется препотенциал, а если достигает - ПД. Эффективность электротонического распространения зависит от сопротивления и емкости мембраны, сопротивления цитоплазмы (улучшается при увеличении диаметра волокна, т. е. с уменьшением сопротивления цитоплазмы, а также при миелинизации волокна, т. е. с увеличением сопротивления мембраны и уменьшением ее емкости). Эффективность электротонического распространения характеризуется постоянной длиной мембраны (?m). Это расстояние, на которое может электротонически распространиться биопотенциал, пока его амплитуда не уменьшится до 37% от исходной величины. Возбужде́ние в физиологии — ответ ткани на раздражение, проявляющийся помимо неспецифических реакций (генерация потенциала действия, метаболические изменения) в выполнении специфической для этой ткани функции; возбудимыми являются нервная (проведение возбуждения), мышечная (сокращение) и железистая (секреция) ткани. Возбудимость — свойство клеток отвечать на раздражение возбуждением. Возбудимостьпроявляется в процессах возбуждения, которые представляют изменение процессов обмена веществ в клетках нервной ткани. Изменение обмена веществ. Провождаетсй передвижением через клеточную мембрану отрицательно и положительно заряженных ионов, что вызывает изменение активности клетки. Эти биоэлектрические изменения в клетке в настоящее время хорошо изучены и могут быть измерены с помощью специальной электронной аппаратуры и особых микроскопических электродов диаметром всего в 1—7 мкм. Разность электрических потенциалов в покое между внутренним содержанием нервной клетки и ее наружной оболочкой составляет около 50—70 мВ (1 мВ = 0,001 В). Эта разность потенциалов, называемая чембранным потенциалом покоя, обусловлена неравенством концентрации ионов в цитоплазме клетки и внеклеточной среде, что в свою очередь связано с избирательной проницаемостью клеточной мембраны к ионам Na+ и К+. В покое концентрация ионов К+ внутри клетки во много раз превышает их концентрацию во внеклеточной среде, Na+ больше во внеклеточной среде. При этом ионы К+ практически свободно диффундируют через мембрану в тканевую жидкость, a Na+ в клетку «путь закрыт». В результате в цитоплазме остаются отрицательно заряженные ионы, а на наружной поверхности клеточной мембраны накапливаются положительно заряженные К+ и Na+ (рис. 13). При возбуждении клетки проницаемость мембраны для ионов Na+ резко увеличивается и они легко проникают н цитоплазму клетки, что приводит к постепенному снижению мембранного потенциала покоя до 0, а затем к возникновению разности потенциалов противоположного знака до — 80-Н 110 мВ. Это кратковременное изменение разбуют развития быстрых ответных действий, например в спортивных играх и единоборствах. Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся: закон силы, закон "все или ничего", закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона. Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее и большее количество мышечных волокон и амплитуда сокращения мышцы все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения. Закон "все или ничего": под пороговые раздражители не вызывают ответной реакции ("ничего"), на пороговые раздражители возникает максимальная ответная реакция ("все"). По закону "все или ничего" сокращаются сердечная мышца и одиночное мышечное волокно. Закон "все или ничего" не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону "все или ничего", но амплитуда ее сокращения будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью. 10. Закон раздражения Дюбуа-Реймона (аккомодации): раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще. Способность к аккомодации различных структур неодинакова. Наиболее.высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка. Хронаксиметрия — метод, определяющий величину хронаксии, т. е. наименьшего времени, в течение которого раздражитель удвоенной пороговой силы вызовет процесс возбуждения. В медицинской практике чаще всего определяется хронаксия мышц и двигательных нервов. Исследуется также хронаксия и чувствительной сферы. Для измерения хронаксии пользуются специальным прибором — хронаксиметром, состоящим из источника постоянного тока, набора сопротивлений и приспособлений для дозировки времени действия тока, подающегося на объект. Хронаксиметрия применяется для определения дегенерации нерва при травмах различных нервных центров. Исследования хронаксии помогают установить сдвиги возбудимости при воздействии различных факторов: работы, тепла, холода, атмосферного давления и т. д. Хронаксиметрия (от греч. chronos — время, axia — количество, metreo — измеряю) — методика измерения хронаксии для исследования возбудимости живых тканей с учетом не только силы раздражителя, но и фактора времени — длительности действия раздражителя. Хронаксия — наименьшее время, в течение которого постоянный электрический ток силой в 2 раза большей порогового может вызвать реакцию.
|