Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача на условный экстремум





Предположительно, что – дифференциальные функции в и ранг матрицы Якоби равен в каждойточке допустимой области , определяемой условием (3). Последнее означает, что градиенты в точках не обращается в нуль и линейно независимы, т.е. условия (3) задают зависимость параметров от параметров. В этом случае:

1. Вводится функция Лагранжа

,

2. дальше минимизируется как функция переменных на безусловный минимум, т.е. используются необходимое и достаточные условия.

Задача выпуклого программирования

(1)

 

(2)

где и - выпуклые дифференциальные функции.

Предположим, что допустимое множество удовлетворяет условию регулярности (условие Слейтера):

Существует точка такая, что для всех , т.е. существует у множества хотя бы одна внутренняя точка.

Говорят, что если в точке выполняется неравенство , то это ограничение является пассивным в точке . Очевидно, что для внутренней точки допустимого множества все ограничения являются пассивными.

Если же в точке какое-то ограничение выполняется с равенством , то оно называется активным в точке .

Обозначим через множество индексов активных ограничений в точке .

.

Введем дополнительные переменные и перейдем от ограниченной – неравенств к ограниченным – равенствам

(3)

функция Лагранжа для задачи (1), (3)

(4)

И получим систему управлений для определения стационарных точек

(5)

(6)

(7)

Условия (5), (6), (7) являются необходимыми условиями минимума в задаче (1), (3).

Исключим из этой системы вспомогательные переменные .

Очевидно, условие (7) эквивалентно (2) (т.к. ).

Умножим каждое равенство (6) на , тогда получим

или (с учетом (7)) . (8)

Составим функцию Лагранжа задачи (1), (2)

.

С учетом соотношения (5), (2) и (8) необходимые условия минимума в задаче (1) (2) принимают вид

(9)

(10)

(11)

Условие (11) означает, что в искомой точке хотя бы один из сомножителей обращается в нуль.

Если , то (ограничение с номером и является активным. Если же в точке (пассивное ограничение), то .

Условие (9) можно заменить

(12)

Откуда следует, что антиградиент в точке минимума является линейной комбинацией внешних нормалей к активным для точки ограничениям.

Тогда с учетом формул (9) – (11) можно сформулировать следующие необходимые условия минимума в задаче (1), (2) с допустимым множеством , удовлетворяющим условию регулярности.

Если является решением задачи (1) (2), то для некоторых чисел

, выполняются соотношение

(13)

(14)

(15)

(16)

которые называются условиями Куна-Таккера.

Эти условия являются и достаточными условиями минимума в задаче (1), (2).

Теорема Куна-Таккера. Для того, чтобы была решением задачи выпуклого программирования (1), (2) с дифференцируемыми функциями и достаточно ( если удовлетворяет условию регулярности, то и необходимая), чтобы существовал сектор , для которого выполняются условия (13) – (16).

Задача математического программирования со смешанными ограничениями.

(17)

(18)

(19)

предполагаются дифференцируемыми.

Справедлива следующая теорема Куна-Таккера:

Пусть в задаче (17) – (19) функции выпуклы и дифференцируемы, функции – линейны, а допустимое множество удовлетворяет условию регулярности.

Тогда, для того, чтобы была решением задачи (17) – (19), необходимо и достаточно, чтобы существовали векторы и для которых выполняются условия:

(20)

(21)

(22)

(23)

(24)







Дата добавления: 2015-09-18; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия