Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача на условный экстремум





Предположительно, что – дифференциальные функции в и ранг матрицы Якоби равен в каждойточке допустимой области , определяемой условием (3). Последнее означает, что градиенты в точках не обращается в нуль и линейно независимы, т.е. условия (3) задают зависимость параметров от параметров. В этом случае:

1. Вводится функция Лагранжа

,

2. дальше минимизируется как функция переменных на безусловный минимум, т.е. используются необходимое и достаточные условия.

Задача выпуклого программирования

(1)

 

(2)

где и - выпуклые дифференциальные функции.

Предположим, что допустимое множество удовлетворяет условию регулярности (условие Слейтера):

Существует точка такая, что для всех , т.е. существует у множества хотя бы одна внутренняя точка.

Говорят, что если в точке выполняется неравенство , то это ограничение является пассивным в точке . Очевидно, что для внутренней точки допустимого множества все ограничения являются пассивными.

Если же в точке какое-то ограничение выполняется с равенством , то оно называется активным в точке .

Обозначим через множество индексов активных ограничений в точке .

.

Введем дополнительные переменные и перейдем от ограниченной – неравенств к ограниченным – равенствам

(3)

функция Лагранжа для задачи (1), (3)

(4)

И получим систему управлений для определения стационарных точек

(5)

(6)

(7)

Условия (5), (6), (7) являются необходимыми условиями минимума в задаче (1), (3).

Исключим из этой системы вспомогательные переменные .

Очевидно, условие (7) эквивалентно (2) (т.к. ).

Умножим каждое равенство (6) на , тогда получим

или (с учетом (7)) . (8)

Составим функцию Лагранжа задачи (1), (2)

.

С учетом соотношения (5), (2) и (8) необходимые условия минимума в задаче (1) (2) принимают вид

(9)

(10)

(11)

Условие (11) означает, что в искомой точке хотя бы один из сомножителей обращается в нуль.

Если , то (ограничение с номером и является активным. Если же в точке (пассивное ограничение), то .

Условие (9) можно заменить

(12)

Откуда следует, что антиградиент в точке минимума является линейной комбинацией внешних нормалей к активным для точки ограничениям.

Тогда с учетом формул (9) – (11) можно сформулировать следующие необходимые условия минимума в задаче (1), (2) с допустимым множеством , удовлетворяющим условию регулярности.

Если является решением задачи (1) (2), то для некоторых чисел

, выполняются соотношение

(13)

(14)

(15)

(16)

которые называются условиями Куна-Таккера.

Эти условия являются и достаточными условиями минимума в задаче (1), (2).

Теорема Куна-Таккера. Для того, чтобы была решением задачи выпуклого программирования (1), (2) с дифференцируемыми функциями и достаточно ( если удовлетворяет условию регулярности, то и необходимая), чтобы существовал сектор , для которого выполняются условия (13) – (16).

Задача математического программирования со смешанными ограничениями.

(17)

(18)

(19)

предполагаются дифференцируемыми.

Справедлива следующая теорема Куна-Таккера:

Пусть в задаче (17) – (19) функции выпуклы и дифференцируемы, функции – линейны, а допустимое множество удовлетворяет условию регулярности.

Тогда, для того, чтобы была решением задачи (17) – (19), необходимо и достаточно, чтобы существовали векторы и для которых выполняются условия:

(20)

(21)

(22)

(23)

(24)







Дата добавления: 2015-09-18; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия