Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача на условный экстремум





Предположительно, что – дифференциальные функции в и ранг матрицы Якоби равен в каждойточке допустимой области , определяемой условием (3). Последнее означает, что градиенты в точках не обращается в нуль и линейно независимы, т.е. условия (3) задают зависимость параметров от параметров. В этом случае:

1. Вводится функция Лагранжа

,

2. дальше минимизируется как функция переменных на безусловный минимум, т.е. используются необходимое и достаточные условия.

Задача выпуклого программирования

(1)

 

(2)

где и - выпуклые дифференциальные функции.

Предположим, что допустимое множество удовлетворяет условию регулярности (условие Слейтера):

Существует точка такая, что для всех , т.е. существует у множества хотя бы одна внутренняя точка.

Говорят, что если в точке выполняется неравенство , то это ограничение является пассивным в точке . Очевидно, что для внутренней точки допустимого множества все ограничения являются пассивными.

Если же в точке какое-то ограничение выполняется с равенством , то оно называется активным в точке .

Обозначим через множество индексов активных ограничений в точке .

.

Введем дополнительные переменные и перейдем от ограниченной – неравенств к ограниченным – равенствам

(3)

функция Лагранжа для задачи (1), (3)

(4)

И получим систему управлений для определения стационарных точек

(5)

(6)

(7)

Условия (5), (6), (7) являются необходимыми условиями минимума в задаче (1), (3).

Исключим из этой системы вспомогательные переменные .

Очевидно, условие (7) эквивалентно (2) (т.к. ).

Умножим каждое равенство (6) на , тогда получим

или (с учетом (7)) . (8)

Составим функцию Лагранжа задачи (1), (2)

.

С учетом соотношения (5), (2) и (8) необходимые условия минимума в задаче (1) (2) принимают вид

(9)

(10)

(11)

Условие (11) означает, что в искомой точке хотя бы один из сомножителей обращается в нуль.

Если , то (ограничение с номером и является активным. Если же в точке (пассивное ограничение), то .

Условие (9) можно заменить

(12)

Откуда следует, что антиградиент в точке минимума является линейной комбинацией внешних нормалей к активным для точки ограничениям.

Тогда с учетом формул (9) – (11) можно сформулировать следующие необходимые условия минимума в задаче (1), (2) с допустимым множеством , удовлетворяющим условию регулярности.

Если является решением задачи (1) (2), то для некоторых чисел

, выполняются соотношение

(13)

(14)

(15)

(16)

которые называются условиями Куна-Таккера.

Эти условия являются и достаточными условиями минимума в задаче (1), (2).

Теорема Куна-Таккера. Для того, чтобы была решением задачи выпуклого программирования (1), (2) с дифференцируемыми функциями и достаточно ( если удовлетворяет условию регулярности, то и необходимая), чтобы существовал сектор , для которого выполняются условия (13) – (16).

Задача математического программирования со смешанными ограничениями.

(17)

(18)

(19)

предполагаются дифференцируемыми.

Справедлива следующая теорема Куна-Таккера:

Пусть в задаче (17) – (19) функции выпуклы и дифференцируемы, функции – линейны, а допустимое множество удовлетворяет условию регулярности.

Тогда, для того, чтобы была решением задачи (17) – (19), необходимо и достаточно, чтобы существовали векторы и для которых выполняются условия:

(20)

(21)

(22)

(23)

(24)







Дата добавления: 2015-09-18; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия