Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы безусловной оптимизации





Методы безусловной оптимизации базируются на результатах, известных из математического анализа, в частности на необходимых и достаточных условиях минимума функции.

Если в точке функция дифференцируема и достигает локального минимума, то

или (3)

Точки, в которых выполняются условия (3), называются точками стационарности функции .

Если в стационарной точке функции дважды дифференцируема и матрица положительно определена, то - точка локального минимума (достаточное условие).

Эти условия лежат в основе классического метода минимизации функций, дифференцируемых во всем пространстве :

1) решается система уравнений (3) и находятся стационарные точки;

2) используются достаточные условия, находятся точки локального минимума и глобального.

 

Общие принципы – мерной оптимизации

1) Для численного решения задач безусловной оптимизации, используются итерационные процедуры

(4)

т.е. выбор параметра на шаге зависит от информации о предыдущих шагах.

Простейшие процедуры типа (4) можно представить в виде:

(5)

где – направление движения из точки в точку , число – величина шага.

2) Величина шага выбирается так, чтобы выполнилось условие

Практически все методы оптимизации можно разделять условно на две группы.

1) Прямые методы оптимизации, в которых на каждом шаге вычисляется только значение целевой функции.

2) Методы, использующие производные целевой функции.

 

Прямые методы.

1. Метод перебора.

Ограничимся случаем одномерной оптимизации унимодальных функций.

Функция называется унимодальной на отрезке , если она непрерывна на и существуют числа такие, что:

1) на отрезке функция монотонно убывает;

2) на отрезке функция монотонно возрастает.

В этом случае отрезок разбивается на равных частей точками .

Вычисляются во всех точках, сравниваются и находится точка минимального значения, т.е.

, т.е. .

Понятно, что погрешность определения не превосходит величины .

Для обеспечения необходимой точности нужно выбрать число деления участков из условия

.

2. Метод поразрядного поиска.

Используются некоторые возможности улучшения метода перебора. Во-первых, если оказывается, что , то не нужно вычислять и т.д.

Во-вторых, разумно сначала определить грубо, а потом искать более точноес меньшим шагом дискретизации.

Есть и другие методы одномерной оптимизации (например, метод золотого сечения, метод аппроксимации параболой).

Прямые методы –мерной оптимизации.

Остановимся сначала на вычислительных процедурах вида (5),в которых выбор нового приближения к точке минимума определяется сравнением значений функций в нескольких точках пространства .

1. Минимизации по правильному симплексу (ПС).

ПС в называется множество из равноудаленных друг от друга точек (вершин симплекса). Отрезок, соединяющий 2 вершины – ребро. В ПС – равносторонний треугольник в – правильный тетраэдр.

2. Метод покоординатного спуска.

3. Метод случайного поиска

,

где – величина шага, - некоторая реализация – мерного случайного вектора. Есть разные реализации этого метода, например,

- алгоритм с возвратом при неудачном шаге,

- алгоритм наилучшей пробы.







Дата добавления: 2015-09-18; просмотров: 552. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия