Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

О теоретическом и эмпирическом мышлении.




В последние годы психологами, работавшими под руководством В. В. Давыдова исследовалось мышление двух типов—эмпирическое и теоретическое.

Теоретическое мышление характеризуется рядом взаимосвязанных компонентов. К ним относятся:

рефлексия, т. е. осмысливание ребенком собственных действий и их соответствия условиям задачи;

анализ содержания задачи с целью выделения принципа или всеобщего способа ее решения, который затем как бы «с места» переносится на целый класс подобных задач;

внутренний план действий, обеспечивающий их планирование и выполнение «в уме».

В исследованиях установлено, что усвоение знаний при обучении ребенка в школе может происходить на основе другого типа мышления, которое получило название эмпирического. Усвоение знаний на основе эмпирического мышления осуществляется посредством сравнения внешне сходных, общих признаков предметов и явлений окружающего мира, важных для последующей их классификации и распознавания. Такое мышление не аналитично, чуждо рефлексии и ограничено в возможностях умственного планирования Эмпирическое решение задач некоторого класса происходит применительно к каждой задаче в отдельности и при постепенном выделении одинакового приема их решения путем «поисков и ошибок». Вследствие этого прием решения задач формируется очень медленно и не приобретает обобщенной формы.

Как проявляются особенности эмпирического или теоретического мышления у учащихся, как выявить, каким путем идет развитие мышления младшего школьника.

Например, важными математическими операциями, усваиваемыми учащимися в младших классах школы, являются операции сложения, вычитания, деления и умножения. Осмысленность усвоения этих действий, как правило, закрепляется и проверяется в процессе решения большого количества различных по сюжету, однотипных по способу действия простейших математических задач. Для определения же степени сформированности теоретического мышления строится экспериментальная ситуация, состоящая из двух частей.

В первой части учащимся предлагается решить одну за другой несколько задач, которые подобраны так, что одни из них похожи по сюжету, другие — по ответу, но все они были бы различны по способу математического решения. Третьи же задачи непохожи внешними признаками, ответом, но имеют одинаковый способ решения.

Задача 1. На крышу дома сели 3 синички. К ним прилетела еще одна. Сколько синичек стало на крыше?

Задача 2. На дереве сидело 17, синичек. 13 синичек улетело. Сколько синичек осталось на дереве? (Общий ответ а задачей 1.) '

Задача 3. 18 синичек поровну разделились на три стаи. Сколько синичек в каждой стае? (Общий сюжет с задачами 1,и 2)

Задача 4. Мальчику дали 7 яблок и 2 груши. Сколько всего фруктов. Дали мальчику? (Способ решения общий с задачей 1.)

После успешного решения всех предложенных задач учащимся предлагается произвести их классификацию (группировку).

В зависимости от того, на какие признаки ориентировался ученик при решении предложенных задач, возможны два основных варианта классификации: с ориентацией ученика на внешние, несущественные признаки условий задач (эмпирический подход) и с ориентацией ученика на математические способы действия, на существенные признаки (теоретический подход) Выбор последнего варианта говорит о том, что в результате решения ученик не только получил конечный результат но и выделил общий способ решения задач соответствующего класса

В ситуации классификации решенных задач дети действовали по - разному: группировали задачи по ответу, по сюжету («задачи про синичек»), по способу решения.

Значительное большинство детей при решении задач ориентируются на несущественные признаки: сюжет и ответ задачи. Количество детей, ориентирующихся на математические способы действий, увеличивается от класса к классу незначительно. Ответ в задаче для большинства учащихся становится самым значимым фактором в определении правильности решения. При этом дети как бы «забывают» о способе решения задач и объединяют в одну группу задачи, имеющие совершенно разный способ, но одинаковый ответ.

Особенности анализа как основы теоретического обобщения могут быть установлены при решении учащимися серии однотипных задач, возрастающих по степени трудности. Но характеру решения таких задач можно судить о наличии или отсутствии у учащихся теоретического анализа.

Например, предлагается задание: не меняя порядка расположения чисел в каждом из предложенных рядов, расставить между ними знаки арифметических действии (сложения, вычитания, умножения и деления) и скобки так, чтобы в результате этих действий в каждом ряду получилось бы по единице.

1)123=1

2)1234=1

3)12345=1

4)123456=1

5)1234567=1

6)12345678=1и т.д.

Если ребенок каждую задачу решает как новую для себя, не выделяя общий принцип их построения, то это свидетельствует об ориентации на внешние, несущественные признаки задач. Решение в таком случае идет методом «проб и ошибок». Если же ребенок открывает при решении двух - трех задач общий принцип их решения, а затем сразу и безошибочно использует его при решении всех подобных задач, значит, он проанализировал первые задачи и при решении остальных опирался на выявленное исходное отношение их условия.

Эти задания могут быть выполнены эмпирически, путем бессистемного перебора знаков арифметических действий.

Задания могут быть выполнены на основе теоретического анализа, когда в процессе мысленного экспериментирования и целенаправленного поиска в ситуации решения двух - трех задач выделяется исходное отношение, закономерность решения всех задании, которая сразу же переносится на решение других задач данной серии, данного класса.

Исходным и существенным для нечетных задач является отношение (1+2) : 3, а для четных—(1 - 2+3—4). Кроме того, все эти задачи, начиная с третьей, имеют еще одну особенность, которая состоит в том, что после выявления исходного отношения действия испытуемых состоят в прибавлении последующего числа и делении на число, следующее за ним.

Исследования психологов показали, что при создании определенных условий (постановка учебных задач и их решение с помощью учебных действий) младшие школьники могут успешно усваивать теоретический материал по математике, русскому языку и другим учебным предметам.


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-09-18; просмотров: 333. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.021 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7