Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклади розв’язання задач





Задача 1. Знайти швидкість човна відносно берега річки, який пливе під кутом a=30° до течії, якщо швидкість течії річки v 1=1,5 м/с, швидкість човна відносно води v 2=2,5 м/с.


Дано:

a = 30°

v 1=1,5 м/с

v 2=2,5 м/с

–?


Розв’язок:

Швидкість човна відносно берега є векторною сумою швидкостей : (див. рис. 1.4).


За теоремою косинусів знайдемо модуль вектора швидкості :

v 2 = v 12 + v 22 – 2 v 1 v 2 cos (p – a);

.

Показаний на рис. 1.4 кут b визначає напрямок вектора швидкості :

,

.

Відповідь: , .

Задача 2. Вільно падаюче тіло за останні 2 с польоту пройшло 196 м шляху. З якої висоти воно впало?


Дано:

Dt=t2 – t1 = 2 c

s = 196 м

h –?

Рис. 1.5
Розв’язок:

Нехай у момент часу t=0 c координата y тіла дорівнює y = h метрів, а в моменти часу t= t1 c і t= t2 cy = s м і y = 0 м відповідно (див. рис. 1.5). Рух тіла відбувається у полі тяжіння Землі, тому прискорення тіла – це прискорення вільного падіння g =9,8 м/с2. Кінематична формула залежності координати y від часу

. (1.1)

За умовою задачі початкова координата y0 = h м, початкова швидкість v 0 = 0 м/с, прискорення м/с2. Записавши формулу (1.1) для моментів часу t= t1 c і t= t2 c, а також вираз з умови t2 – t1 = 2 c, отримаємо систему трьох алгебраїчних рівнянь з трьома невідомими


h, t1 і t2 , розв’язавши яку, знайдемо відповідь задачі:

.

Відповідь: .

Задача 3. На висоті 10 м над Землею кинуто камінь під кутом 30° до горизонту зі швидкістю v =20 м/с. Знайти найбільшу висоту каменя над поверхнею Землі під час його польоту і відстань, яку він здолає у горизонтальному напрямку. Опором повітря знехтувати.


Дано:

h = 10 м

v 0=20 м/с

a = 30°

H –?

s –?


Розв’язок:

Рис. 1.6


Рух тіла відбувається у полі тяжіння Землі, тому прискорення тіла – це прискорення вільного падіння g =9,8 м/с2. Розкладемо рух каменя на два компоненти: 1) рівномірний рух уздовж осі x; 2) рівноприскорений рух уздовж осі y. Кінематичні формули залежності координат x і y від часу, а також відповідних швидкостей v x i v y такі:

(1.2)

(1.3)

(1.4)

. (1.5)

За умовою задачі: початкові координати – y0 = h м, x0 = 0 м; початкові швидкості – v 0x = v 0 cos a м/с, v 0x = v 0 sin a м/с; прискорення – м/с2, м/с2. З урахуванням цього формули (1.2)–(1.5) перепишемо у вигляді

(1.6)

(1.7)

(1.8)

. (1.9)

У верхній точці D v y = 0 м/с. Отже з останньої формули можна знайти момент часу, коли камінь має найбільшу висоту:

; ; ;

і за формулою (1.7) саму цю висоту:

.

Момент часу tп падіння знайдемо з рівняння

.

; ;

; .

Час завжди додатній, тому перший корінь відкидаємо і за формулою (1.6) обчислимо шлях у горизонтальному напрямі s:

.

Відповідь: , .

Задача 4. Шлях s, який проходить матеріальна точка вздовж кола радіусом 4 м, від часу залежить за законом s=A+Bt+Ct2, де A =2 м, В =3 м/с, С=1 м/с2. Знайти прискорення а точки у момент часу і сам момент часу, коли нормальне прискорення дорівнює 4 м/с2.



Дано:

R=4 м

s=A+Bt+Ct2

A =2 м

В = 3 м/с

С=1 м/с2

an=4 м/с2

v –?

a –?


Розв’язок:

Знайдемо формули для швидкості й тангенціального прискорення. Для цього продиференцюємо вираз для s:

s=B+2Ct=3+2t,

=2C=2 м/с2.

Можемо визначити прискорення а за теоремою Піфагора (див. рис. 1.7):

Рис. 1.7

.

Потрібний момент часу знайдемо з умови an=4 м/с2. Скориставшись формулою для нормального прискорення

, , ,

отримаємо два значення моменту часу:

t1=0,5 c і t2= c.

Друге значення часу відкидаємо, бо воно не задовольняє умові задачі (t³0).

Відповідь: , t=0,5 c.








Дата добавления: 2015-09-18; просмотров: 515. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия