Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка эффективности использования ресурсного потенциала на основе корреляционно-регрессионного анализа





Производственный потенциал представляет собой обобщающий показатель ресурсообеспеченности сельского хозяйства, и его расчет состоит в определении суммарной оценки всех ресурсов. Основная трудность в построении такого показателя заключается в несоизмеримости различных видов ресурсов: земельных, трудовых и материальных. Теоретической основой их соизмерения является концепция взаимозаменяемости разных видов ресурсов

в процессе производства.

Элементы ресурсного потенциала, с одной стороны, качественно однородны по функциональному признаку, так как все они представляют собой ресурсы, предопределяющие результаты производственной деятельности. С другой стороны, ресурсный потенциал является синтетическим расчетным показателем, который нельзя непосредственно измерить. Поэтому разработка

соответствующего инструментария всегда имела большое теоретическое и практическое значение, а сейчас, в условиях развития рыночных отношений, когда возрастает роль экономических методов государственного регулирования, эта проблема становится еще более актуальной.

В российской аграрной экономике предлагаются различные методы количественной оценки использования ресурсного потенциала предприятия. Наиболее приемлем для расчета комплексного показателя оценки ресурсного потенциала подход, основанный на корреляционно-регрессионном анализе, который нашел свое отражение в работах экономистов Смагина Б.И, Акиндинова В.В., Т. Шаталовой и др.

С теоретической точки зрения, в качестве обобщающего результативного показателя комплексной оценки необходимо использовать выход товарной продукции сельского хозяйства на 1 га сельскохозяйственных угодий. На наш взгляд, в рыночных условиях целесообразнее в качестве результата рассматривать показатель товарной продукции сельского хозяйства на единицу площади. Аргументом в пользу выбора данного показателя является и тот факт, что в сельском хозяйстве значительная часть произведенной продукции не реализуется, а используется повторно в процессе производства. Поскольку цель любого производства – получение прибыли, то стоимость товарной продукции является важнейшей

составляющей ее формирования.

Однако однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков позволяет корреляционно-регрессионный метод анализа, который дает возможность исследовать зависимость выхода товарной продукции в расчете на 1 га сельскохозяйственных угодий (у) от следующих факторов:

х1- трудообеспеченность, чел.;

х2- фондообеспеченность, руб.;

х3– энергообеспеченность, л.с.

х4- производственные затраты на 100 га сельскохозяйственных угодий, руб.

Таблица 27 – Исходные данные для корреляционно-регрессионного анализа производственного потенциала

Показатель 2008г. 2009г. 2010г. 2011г. 2012г. 2013г.
Выручка,тыс. руб.            
площадь сельскохозяйственных угодий, га            
среднесписочная численность работников, чел.            
среднегодовая стоимость основных средств, тыс. руб.            
энергетические мощности, л. с.            
затраты на производство продукции, тыс. руб.            

 

Динамика необходимых показателей для корреляционно-регрессионного анализа производственного потенциала представлена в таблице 28.

 

Таблица 28 - Результативные и факторные показатели производственного потенциала

Показатель 2008г. 2009г. 2010г. 2011г. 2012г. 2013г.
Выход товарной продукции в расчете на 1 га, руб. (y) 5673,59 5652,82 5585,79 3998,32 5269,10 6967,49
Трудообеспеченность, чел. (х1) 0,02 0,02 0,02 0,02 0,02 0,02
Фондообеспеченность, руб. (х2) 4235,92 4269,10 4311,33 3766,09 3780,83 3874,33
Энергообеспеченность, л. с. (х3) 0,75 0,71 0,67 0,59 0,79 0,88
Затраты на производство продукции на 100 га, руб. (х4) 611260,05 610288,20 604557,64 354524,13 485489,28 658009,38

 

 

Показатель вариации

Vy= * 100; = * 100; = * 100; = * 100;

где

σ - стандартное отклонение;

у, х - среднее значение;

Vy = * 100 = 13,5;

= * 100 = 0;

= * 100 = 6,74;

= * 100 = 11,27;

= * 100 = 20,24;

Так как переменные х1, х2, х3, х4 слабо варьируют от средней величины, то можно сделать ввод о низком уровне варьирования. Показатель вариации по результативному показателю (у) составил 13,5.

Для изучения связи между показателями будем использовать метод наименьших квадратов и вероятностные методы оценки статистических гипотез.

Значение коэффициента в парной корреляции указывает на весьма тесную связь выхода товарной продукции в расчете на 1 га (у) с затратами на производство продукции на 100 га (х4).

= 0,965

но в то же время весьма тесная межфакторная связь между х2 и х4

= 0,914

Далее необходимо составить уравнение вида:

у = b0 + b1x1 + b2x2 +b3x3 + b4x4.

b – коэффициенты при переменных величинах.

Для определения коэффициентов воспользуемся таблицей «регрессия»:

у = 14768,41+ 0,13x1 -3,76x2 -3639,07x3 +0,02x4

Значение стандартных ошибок, параметров b0, b1, b2, b3, b4 с учетом округления:

mb0 = 3094,41;

mb1 = 0,13;

mb2 = 0,82;

mb3 = 1391,89;

mb4 = 0,01;

Они показывают, какое значение данной характеристики сформировалось под влиянием случайных факторов. Эти значения используются для расчета t-критерия Стьюдента (t - статистика).

tb0 = 4,77;

tb1 = 65535;

tb2 = -4,57;

tb3 = -2,61;

tb4 = 6,79;

Если значения t - критерия больше 2-3 (чаще всего 2,5) можно сделать вывод о существенности данного параметра, который формируется под воздействием неслучайных величин.

Здесь статистически значимыми являются все показатели. На это же указывает показатель вероятности случайных значений параметров регрессии.

Если α (Р – значение) больше чем 10% (0,1), то фактор можно считать случайным и неинформативным и удалить его для дальнейшего улучшения уравнения.

В нашем случае α равняется 13,14%, 13,71% и 23,25% что больше 10%, поэтому факторы х1 и х2 можно отбросить из нашего уравнения, для его улучшения.

Величина b1 = 0,13 оценивает агрегированное влияние прочих факторов на результативный показатель.

По данным таблицы дисперсионного анализа F фактическое = 957,72. Вероятность случайно получить такое значение F критерия составляет 0,00000003, что не превышает допустимый уровень значимости 5%, следовательно, полученное значение не случайно. Об этом свидетельствует величина Р-значения из этих же таблиц.

Полученное значение сформировалось под влиянием существенных факторов, то есть подтверждается статистическая значимость всего уравнения и показателя тесноты связи нескорректированный коэффициент множественной детерминации = 0,9997 оценивает долю вариаций результата за счёт представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет 99,97% и указывает на высокую степень обусловленности вариации результата, вариации факторов.

Скорректированный коэффициент множественной детерминации = -0,0014 определяет тесноту связи с учетом степени свободы общей и остаточной дисперсии. Он дает такую оценку тесноты связи, которая не зависит от числа факторов модели и потому может сравниваться по разным моделям с разным числом факторов.

Оба коэффициента указывают на высокую детерминированность результата у в модели с факторами х1, х2, х3, х4.

 

 







Дата добавления: 2015-09-18; просмотров: 1467. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия