Алгебраический критерий устойчивости Раусса. 1875г.
Раусс выразил его в форме таблицы. Элементами первой строки являются четные коэффициенты характеристического уравнения (полинома), начиная с Итак, характеристический полином
В данной таблице должна быть n+1 строка. Если все элементы первого столбца таблицы Раусса положительны (одного знака), то система устойчива. Если хотя бы один элемент отрицателен, то система неустойчива. При этом число перемен знака равно числу правых корней характеристического уравнения. Если один из элементов первого столбца равен нулю, то система находится на границе устойчивости, а характеристическое уравнение имеет пару мнимых корней. В случае, когда последний элемент равен нулю, то корень уравнения – нулевой вещественный. При нескольких нулевых последних элементах первого столбца таблицы имеется соответствующее количество нулевых корней характеристического уравнения. Критерий устойчивости Гурвица. 1895 г.
На основании характеристического уравнения системы
строится определитель Гурвица (при
Для устойчивости системы необходимо и достаточно, чтобы определитель Гурвица и все его диагональные миноры были положительны. Диагональные миноры:
|