Интерференция в клине
1.26. На стеклянный клин (n=1,5) с малым углом нормально к его грани падает параллельный пучок лучей монохроматического света с длиной волны 0,698 мкм. Определить угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм. [ ]. 1.27. На тонкий стеклянный клин (n=1,5) нормально падает монохроматический свет. Угол клина равен . Определить длину световой волны, если расстояние между двумя соседними интерференционными максимумами в отраженном свете равно 0,2 мм. [698 нм]. 1.28. На стеклянный клин (n=1,5) падает нормально пучок света с длиной волны 0,582 мкм. Угол клина равен . Какое число темных интерференционных полос приходится на единицу длины клина? [5 полос на 1 см]. 1.29. Между двумя плоскопараллельными стеклянными пластинками (n=1,5) положили очень тонкую проволочку. Проволочка находится на расстоянии 75 мм от линии соприкосновения пластинок и ей параллельна. В отраженном свете с длиной волны 0,5 мкм на верхней пластинке видны интерференционные полосы. Определить толщину проволочки, если на протяжении 30 мм насчитывается 16 светлых полос. [10 мкм]. 1.30. Между двумя плоскопараллельными стеклянными пластинками (n=1,5) на расстоянии 10 см от границы их соприкосновения находится проволока диаметром 0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим светом с длиной волны 0,6 мкм. Определить ширину интерференционных полос, наблюдаемых в отраженном свете. [3 мм]. 1.31. Монохроматический свет падает нормально на поверхность воздушного клина, причем расстояние между интерференционными полосами равно 0,4 мм. Определить расстояние между интерференционными полосами, если пространство между пластинами, образующими клин, заполнить прозрачной жидкостью с показателем преломления n=1,33. [0,3 мм].
|