Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные формулы и законы. где – постоянная Планка; – импульс частицы (




 

· Длина волны де Бройля

,

где – постоянная Планка; – импульс частицы ( – масса частицы; – её скорость).

· Связь импульса частицы с ее кинетической энергией :

,

где – масса покоя частицы. При малых скоростях .

· Соотношение неопределенностей Гейзенберга

,

где , – соответственно неопределенности координаты, импульса, энергии и времени, .

· Нестационарное уравнение Шредингера

.

· Уравнение Шредингера для стационарных состояний

,

где – волновая функция микрочастицы; – полная энергия микрочастицы; = – потенциальная энергия частицы; – пространственная координата ( = ); t – время, ∆ = – оператор Лапласа (записан в декартовых координатах); – масса микрочастицы; – постоянная Планка; = – мнимая единица.

· Одномерное уравнение Шредингера для стационарных состояний

.

· Условие нормировки волновой функции

.

· Плотность вероятности

,

где – вероятность того, что частица может быть обнаружена вблизи точки с координатой на участке .

· Вероятность обнаружения частицы в интервале от до

.

· Решение уравнения Шредингера для одномерного, бесконечно глубокого, прямоугольного потенциального ящика шириной (0 ≥ )

(собственная нормированная волновая функция)

(собственное значение энергии),

где – главное квантовое число ( = 1, 2, 3,…). В области 0≥ = ∞ и = 0.

· Коэффициент прозрачности прямоугольного потенциаль-ного барьера

,

где – постоянный множитель (можно приравнять единице); – высота барьера; – полная энергия частицы; – ширина барьера.

· Энергия квантового осциллятора

,

где – главное квантовое число ( =0, 1, 2,…); – собственная частота колебаний осциллятора.

· Для частиц с целочисленными спинами (бозонов) справедлива статистика Бозе-Эйнштейна, а для частиц с полуцелыми спинами (фермионов) справедлива статистика Ферми-Дирака. Обобщенное уравнение для квантовых статистик

,

где - среднее число частиц в состоянии с номером i,
– энергия частицы в этом состоянии; m – так называемый химический потенциал, определяемый из условия , т. е. сумма всех частиц равна полному числу частиц в системе, знак минус (-) перед единицей в знаменателе соответствует статистике бозонов (распределению Бозе-Эйнштейна, а знак плюс (+) соответствует статистике фермионов (распределению Ферми-Дирака).

 







Дата добавления: 2015-09-18; просмотров: 310. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.003 сек.) русская версия | украинская версия