Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока 24 страница





Гипотеза о существовании нейтрино позволила Э. Ферми создать теорию b -распада (1934), которая в основном сохранила свое значение и в настоящее время, хотя экспериментально существование нейтрино было доказано более чем через 20 лет (1956). Столь длительные «поиски» нейтрино сопряжены с большими трудностями, обусловленными отсутствием у нейтрино электрического заряда и массы. Нейтри­но — единственная частица, не участвующая ни в сильных, ни в электромагнитных взаимодействиях; единственный вид взаимодействий, в котором может принимать участие нейтрино, — слабое взаимодействие. Поэтому прямое наблюдение нейтрино весьма затруднительно. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится на 500 км пути. Проникающая же способность нейтрино столь огромна (пробег нейтрино с энергией 1 МэВ в свинце составляет примерно 1018 м!), что затрудняет удержание этих частиц в приборах.

Для экспериментального выявления нейтрино (антинейтрино) применялся поэтому косвенный метод, основанный на том, что в реакциях (в том числе и с участием нейтрино) выполняется закон сохранения импульса. Таким образом, нейтрино было обнаружено при изучении отдачи атомных ядер при b -распаде. Если при b -распаде ядра вместе с электроном выбрасывается и антинейтрино, то векторная сумма трех импульсов — ядра отдачи, электрона и антинейтрино — должна быть равна нулю. Это действительно подтвердилось на опыте. Непосредственное обнаружение нейтрино ста­ло возможным лишь значительно позднее, после появления мощных реакторов, позво­ляющих получать интенсивные потоки нейтрино.

Введение нейтрино (антинейтрино) позволило не только объяснить кажущееся несохранение спина, но и разобраться с вопросом непрерывности энергетического спектра выбрасываемых электронов. Сплошной спектр b -частиц обусловлен распределением энергии между электронами и антинейтрино, причем сумма энергий обеих частиц равна Е max. В одних актах распада большую энергию получает антинейтрино, в других — электрон; в граничной точке кривой на рис. 343, где энергия электрона равна Е max, вся энергия распада уносится электроном, а энергия антинейтрино равна нулю.

Наконец, рассмотрим вопрос о происхождении электронов при b -распаде. По­скольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение, что b - электрон рождается в результате процессов, происходящих внутри ядра. Так как при b -распаде число нуклонов в ядре не изменяется, a Z увеличи­вается на единицу (см. (265.5)), то единственной возможностью одновременного осуще­ствления этих условий является превращение одного из нейтронов b -активного ядра в протон с одновременным образованием электрона и вылетом антинейтрино:

(258.1)

В этом процессе выполняются законы сохранения электрических зарядов, импульса и массовых чисел. Кроме того, данное превращение энергетически возможно, так как масса покоя нейтрона превышает массу атома водорода, т. е. протона и электрона вместе взятых. Данной разности в массах соответствует энергия, равная 0,782 МэВ. За счет этой энергии может происходить самопроизвольное превращение нейтрона в про­тон; энергия распределяется между электроном и антинейтрино.

Если превращение нейтрона в протон энергетически выгодно и вообще возможно, то должен наблюдаться радиоактивный распад свободных нейтронов (т. е. нейтронов вне ядра). Обнаружение этого явления было бы подтверждением изложенной теории b -распада. Действительно, в 1950 г. в потоках нейтронов большой интенсивности, возникающих в ядерных реакторах, был обнаружен радиоактивный распад свободных нейтронов, происходящий по схеме (258.1). Энергетический спектр возникающих при этом электронов соответствовал приведенному на рис. 343, а верхняя граница энергии электронов E max оказалась равной рассчитанной выше (0,782 МэВ).

§ 259. Гамма-излучение и его свойства

Экспериментально установлено, что g -излучение (см. § 255) не является самостоятель­ным видом радиоактивности, а только сопровождает a - и b -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g -Спектр является линейчатым. g -Спектр — это распределение числа g -квантов по энергиям (такое же толкование b -спектра дано в §258). Дискретность g -спектра имеет принципи­альное значение, так как является доказательством дискретности энергетических состо­яний атомных ядер.

В настоящее время твердо установлено, что g -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбуж­денным, за время примерно 10–13—10–14 с, значительно меньшее времени жизни возбужденного атома (примерно 10–8 с), переходит в основное состояние с испускани­ем g -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g -излучение одного и того же радиоак­тивного изотопа может содержать несколько групп g -квантов, отличающихся одна от другой своей энергией.

При g -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g -Излучение большинства ядер является столь коротковолно­вым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g -излучение рассматривают как поток частиц — g -квантов. При радиоактивных распадах различных ядер g -кванты имеют энергии от 10 кэВ до 5 МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состоя­ние не только при испускании g -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с g -излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде g -кванта, то частота излучения n определяется из извест­ного соотношения E=hn. Если же испускаются электроны внутренней конверсии, то их энергии равны Е—АK, E—AL,.... где AK, AL,... — работа выхода электрона из К- и L -оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от b -электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электро­нами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.

g -Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении g -излучения сквозь вещество они либо поглощаются, либо рассеива­ются им. g -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка g -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, измене­ние которой описывается экспоненциальным законом I = I 0e mx (I 0 и I — интенсивности g -излучения на входе и выходе слоя поглощающего вещества толщиной х, m — коэф­фициент поглощения). Так как g -излучение — самое проникающее излучение, то m для многих веществ — очень малая величина; m зависит от свойств вещества и от энергии g -квантов.

g -Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике до­казывается, что основными процессами, сопровождающими прохождение g -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение g -излучения, — это процесс, при котором атом поглощает g -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электрона­ми из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом погло­щения в области малых энергий g -квантов (Eg £ 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить g -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии g -квантов (Eg»0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия g -квантов с веществом является комптоновское рассеяние (см. § 206).

При Eg >l,02 МэВ=2 meс 2 (тe масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероят­ность этого процесса пропорциональна Z 2 и увеличивается с ростом Eg. Поэтому при Eg»10 МэВ основным процессом взаимодействия g -излучения в любом веществе является образованно электронно-позитронных пар.

Если энергия g -кванта превышает энергию связи нуклонов в ядре (7—8 МэВ), то в результате поглощения g -кванта может наблюдаться ядерный фотоэффект — выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность g -излучения используется в гамма-дефектоско­пии — методе дефектоскопии, основанном на различном поглощении g -излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие g -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:

Поглощенная доза излучения — физическая величина, равная отношению энергии излучения к массе облучаемого вещества.

Единица поглощенной дозы излучения — грей (Гр)*: 1 Гр= 1 Дж/кг — доза из­лучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

* С. Грей (1666—1736) — английский физик.

 

Экспозиционная доза излучения — физическая величина, равная отношению суммы электрических зарядоввсех ионов одного знака, созданных электронами, освобожден­ными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.

Единица экспозиционной дозы излучения — кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р=2,58×10–4 Кл/кг.

Биологическая доза — величина, определяющая воздействие излучения на орга­низм.

Единица биологической дозы — биологический эквивалент рентгена (бэр): 1 бэр — доза любого вида ионизирующего излучения, производящая такое же биоло­гическое действие,как и доза рентгеновского или g -излучения в 1 Р (1 бэр = 10–2 Дж/кг).

Мощность дозы излучения — величина, равная отношению дозы излучения к време­ниоблучения. Различают: 1) мощность поглощенной дозы (единица — грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица — ампер на килограмм (А/кг)).

§ 260. Резонансное поглощение g -излучения (эффект Мёссбауэра*)

Как уже указывалось, дискретный спектр g -излучения обусловлен дискретностью энер­гетических уровней ядер атомов. Однако, как следует из соотношения неопределен­ностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах D E» h/ D t, где D t — время жизни ядра в возбужденном состоянии. Следовательно, чем меньше D t, тем больше неопределенность энергии D E возбужденного состояния. D E =0только для основного состояния стабильного ядра (для него D t ®¥). Неопределен­ность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10–13 с, естест­венная ширина энергетического уровня примерно 10–2 эВ.

* Р. Мёссбауэр (р. 1929) — немецкий физик.

 

Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состоянии ядра, приводит к немонохроматичности g -излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии g -излучения.

При прохождении g -излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить g -квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение g -излучения ядрами: ядро поглощает g -квант той же частоты, что и частота излучаемого ядром g -кванта при переходе ядра из данного возбужденного состояния в основное.

Наблюдение резонансного поглощения g -квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый g -квант имеет энергию Еg несколько меньшую,чем Е, из-за отдачи ядра в процессе излучения:

где Е я кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е g -квант должен иметь энергию

где Е я энергия отдачи, которую g -квант должен передать поглощающему ядру.

Таким образом, максимумы линий излучения и поглощения сдвинуты друг от­носительно друга на величину 2 Е я (рис. 344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы g -кванта и ядра должны быть равны, получим

(260.1)

Например, возбужденное состояние изотопа иридия Ir имеет энергию 129 кэВ, а время его жизни порядка 10–10 с, так что ширина уровня Г»4×10–5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 5×10–2 эВ, т. е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.

Резонансное поглощение g -излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Нобелевская премия 1961 г.). Он исследовал излучение и поглощение g -излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) g -квант, а всей кристал­лической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и по­глощения g -излучения происходят практически без потерь энергии (идеально упруго).

Явление упругого испускания (поглощения) g -квантов атомными ядрами, связан­ными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра. При рассмотренных условиях линии излучения и поглощения g -излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г. Эффект Мёссбауэра был открыт на глубоко охлажденном Ir (с понижением температуры колебания решетки «замораживаются»), а впос­ледствии обнаружен более чем на 20 стабильных изотопах (например, 57Fe, 67Zn).

Мёссбауэр вооружил экспериментальную физику новым методом измерений неви­данной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/E= 10–15¸10–17, поэтому во многих облас­тях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали g -линий, внутренние магнитные и электрические поля в твердых телах и т. д.

Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движения в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезнове­нию эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравита­ционное красное смещение», предсказанный общей теорией относительности Эйнштейна.

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

Практически все методы наблюдения и регистрации радиоактивных излучений (a, b, g)и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а g -кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистриро­вать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию.

Приборы, применяемые для регистрации радиоактивных излучений и частиц, де­лятся на две группы:

1) приборы, позволяющие регистрировать прохождение частицы через определен­ный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черенковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);

2) приборы, позволяющие наблюдать, например фотографировать, следы (треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).

1. Сцинтилляционный счетчик. Наблюдение сцинтилляций — вспышек света при по­падании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу* и Э. Резерфорду на заре ядерной физики (1903) визуально регистриро­вать a -частицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) (см. § 245) и фотоэле­ктронный умножитель (см. § 105), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обыч­но в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для a -частиц; NaI-Tl, CsI-Tl — для b -частиц и g -квантов) или органических (антрацен, пластмассы — для g -квантов) веществ.

* У. Крукс (1832—1919) — английский физик и химик.

 

Сцинтилляционные счетчики обладают высоким разрешением по времени (10–10—10–5 с), определяемым родом регистрируемых частиц, сцинтиллятором и раз­решающим временем используемой электронной аппаратуры (оно доведено сейчас до 10–8—10–10 с). Для этого типа счетчиков эффективность регистрации—отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для g -квантов. Так как для многих сцинтилляторов (NaI-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц.

2. Черенковский счетчик. Принцип его работы и свойства излучения Вавило­ва — Черенкова, лежащие в основе работы счетчика, рассмотрены в § 189. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения (см. (189.1)), можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счет­чиков разрешение по скоростям (иными словами, по энергиям) составляет 10–3 —10–5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка 1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10–9 с. Счетчики Черенкова устанавливаются на космических кораблях для исследования космического излучения.

3. Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизацион­ная камера представляет собой заполненный газом электрический конденсатор, к элек­тродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не разгонялись настолько сильно, чтобы производить вто­ричную ионизацию. Следовательно, в ионизационной камере на ее электродах непо­средственно собираются ноны, возникшие под действием заряженных частиц. Иониза­ционные камеры бывают двух типов: интегрирующие (в них измеряется суммарный ионизационный ток)и импульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).

4. Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный (см. § 106), т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера — Мюллера* (в них разряд самостоятельный (см. § 107), т. е. поддерживается после прекращения действия внешнего ионизатора).

* Э. Мюллер (1911—1977) — немецкий физик.

 

В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольт-амперной характеристики, соответствующей несамостоя­тельному разряду, в которой выходной импульс пропорционален первичной иониза­ции, т. с. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызыва­емые отдельными частицами, усиливаются в 103 —104 раз (иногда и в 106 раз).

Счетчик Гейгера — Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду (см. § 107), когда выход­ной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряже­ния, достаточное для прерывания разряда. Временное разрешение счетчиков Гей­гера—Мюллера составляет 10–3—10–7 с. Для газоразрядных счетчиков эффектив­ность регистрации равна примерно 100% для заряженных частиц и примерно 5% для g -квантов.

5. Полупроводниковый счетчик — это детектор частиц, основным элементом кото­рого является полупроводниковый диод (см. § 250). Время разрешения составляет примерно 10–9 с. Полупроводниковые счетчики обладают высокой надежностью, мо­гут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измере­ния высокоэнергетических частиц.

6. Камера Вильсона * (1912) — это старейший и на протяжении многих десятиле­тий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного рас­положения фотографируются стереоскопически, т. е. под разными углами. По харак­теру и геометрии треков можно судить о типе прошедших через камеру частиц (например, a -частица оставляет сплошной жирный след, b -частица — тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.

* Ч. Вильсон (1869—1959) — английский физик.

 

Российский ученый Д. В. Скобельцын (1892—1990) значительно расширил возмож­ности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, состав­ляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последу­ющему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.

7. Диффузионная камера (1936) это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создастся диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлажда­емому (до —60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.

8. Пузырьковая камера (1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.







Дата добавления: 2015-09-18; просмотров: 479. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия