Акустоелектроніка та акустооптика
Акустоелектроніка базується на використанні прямого та зворотнього п’єзоелектричних ефектів та на явищі взаємодії електричних полів із хвилями акустичних напружень. По суті, акустоелектроніка займається перетворенням електричних сигналів в акустичні та акустичних – в електричні. Одним з основних приладівакустоелектроніки є акустоелектронний підсилювач (АЕП). На рис. 3.1 показана схема такого підсилювача на об’ємних звукових хвилях. На протилежних торцевих зрізах звукопроводу (3в) розташовані п’єзоелектричні перетворювачі (П1 і П2). Вони за допомогою омічних електричних контактів (К1 і К2) підключені з одного боку до звукопроводу а з іншого – до вхідних та вихідних клем. Коли на вхід подаємо змінне періодичне електричне поле Uвх, то у п’єзоелект ричному перетворювачі П1 виникають періодичні деформації (зворотній п’єзоефект), які збуджу ють акустичну хвилю. Вона розповсюджється у звукопроводі й досягає п’єзопе ретворювача П2. Він перетворює періодичну деформацію в періодичну змінну напругу Uвих (п’єзо-електрорушійну силу, прямий п’єзоефект). Підсилення напруги Uвих забезпечує взаємодія акустичної хвилі з електронами, що рухаються у звукопроводі завдяки наявності електричного поля Е. Розглянемо цю взаємодії докладніше. Розповсюдження акустичної хвилі означає, що тиск у звукопроводі та п’єзоперетворювачі П2 змінюється від однієї точки до іншої. У тих місцях звукопроводу (який теж має п’єзоелектричні властивості), де кристал стискається, утворюються згущення потоку електронів, а де розтягується – розрідження. У згущеннях п’єзоелектрична напруга гальмує рух електронів, а у розрідженнях – прискорює. У згущеннях електрони віддають свою енергію кристалічній решітці звукопроводу, підсилюючи акустичну хвилю, тобто й Uвих. Подібні АЕП здатні забезпечувати вихідну потужність сигналу ~ Вт, а полосу частот до 3·109 Гц. Об’єм АЕП ≤ 1 см3. Основним недоліком об’ємних АЕП є відносно велике розсіювання потужності у звукопроводі. Кращими характеристиками володіють АЕП на поверхневих хвилях (рис. 3. 2, а). За допомогою електродів спеціальної форми (рис. 3.2, б) у п’єзопертворю вачі вводять та з них знімають електричну напругу Uвх і Uвих, акустична хвиля йде вздовж плівки з високою електропровідністю. Плівка нанесена на поверхню напівпровідника, за цією ж плівкою пропускають електричний струм від джерела Е. В плівці відбувається взаємодія потоку електронів з акустичною хвилею. Матеріалом об’ємних та плівкових звукопроводів є напівпровідники з високою електропровідністю та рухливістю електронів, наприклад, Si з n-типом електропровідності та інші. П’єзоперетворювачі виготовляють з п’єзоелектрич них кристалів. В цілому АЕП є вельми перспективними підсилювачами, особливо для сигналів НВЧ частот. Акустоо́птика вивчає взаємодію оптичних й акустичних хвиль (акустооптична взаємодія), а також розробляє прилади, що використовують акустооптичну взаємодію. Акустооптичне обладнання дозволяє керувати амплітудою, частотою, поляризацією, напрямком поширення світлового променя. В будь-якому акустооптичному обладнанні акустична хвиля збуджується за допомогою того або іншого п’єзоперетворювача. Таким чином, акустоопнтичними приладами керують за допомогою електричних сигналів (високої частоти), які виробляються у відповідних електронних блоках. Одними з основних акустоопнтичних приладів є акустооптичні модулятори, акустооптичні дефлектори й сканери та акустооптичні процесори. Акустооптичні модулятори – прилади, що керують інтенсивністю світлових променів на основі перерозподілу світлової енергії між світлом, що про ходить без дифракції й дифрагованим. Акустооптичний модулятор (рис.3.3) являє собою акустооптичну комірку (АОК), у якій поширюється амплітудно-модульована звукова хвиля. АОК, у свою чергу, це паралелепіпед (об’єм ~10 мм3) з акустооптичного кристала, до якого прикріплено п’єзопере творювач. Падаючий на АОК світловий промінь частково дифрагує, а відхилений промінь уловлюється фотоприйомним обладнанням. У модуляторах використовується як бреггівська дифракція, так і дифракція Рамана-Ната. Швидкодія модулятора визначається часом проходження звукового сигналу через поперечний переріз світлового променя вона є ~ 10-6 – 10-7 с. Акустооптичні модулятори мають максимально просту конструкцію, але дозволяють здійснювати складні операції в акустооптичних процесорах. Акустооптичні дефлектори й сканери – обладнання для керування напрямком світлового променя в просторі. Сканери призначені для безперервного розгорнення променя, а у дефлекторі є набір фіксованих напрямків, по яких повинен відхилятися світловий промінь. Принцип роботи дефлектора (рис.3.4) базується на дифракції світла на ультразвукових хвилях, що розповсюджуються в кристалі. Кут дифракції визначає формула Брегга: sinθ = λ0/ 2Λ = λ0 ν/2v, де θ – кут падіння світлового променя на кристал, λ0 – довжина світлової хвилі у вакуумі, Λ –довжина звукової хвилі у кристалі, ν та v – частота та швидкість ультразвукових хвиль. На рис. 3.4 стрілками, спрямованими до акустооптичного кристала під кутом θ, показано промінь, що падає на кристал, стрілками, які йдуть від кристала – промінь, що пройшов без дифракції та дифрагований промінь. В результаті дифракції він відхиляється на Δθ. Змінюючи частоту звукової хвилі ν, змінюємо й кут відхилення дифрагованого променя і від переміщується за екраном фотоприйомного обладнання. Відносна інтенсивність дифрагованого світла визначає відношення: I/I0 ~2 sin(½ qLΔθ)/ (qLΔθ), де I0, I – інтенсивності світла,що падає та дифрагує, відповідно, q = 2π/ Λ, L – апертура ультразвукового променя. Одним з найбільш ефективних акустооптичних матеріалів є монокристали парателурита TeO2. Застосування в АОК двозаломлюючих кристалічних матеріалів дозволяє суттєво поліпшити характеристики дефлекторів. Акустооптичні процесори. Важливою областю практичного застосування акустоопнтичних ефектів є системи обробки інформації, де акустооптичне обладнання використовують для обробки НВЧ-сигналів у реальному масштабі часу.Акустооптичні процесори здійснюють ті або інші математичні операції над оптичними й акустичними сигналами. Зокрема: корелятори — обчислюють кореляцію двох сигналів; конвольвери — виконують математичну операцію згортання двох сигналів; матрично-векторні процесори — виконують операції линійної алгебри.
|