Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нахождение промежутков возрастания и убывания функции, точек экстремума.





Промежутки возрастания и убывания являются решениями неравенств и соответственно.

Определение 8. Точки, в которых производная обращается в ноль, называют стационарными.

Определение 9. Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.

Таким образом, чтобы определить промежутки возрастания и убывания функции:

1) находим производную;

2) находим критические точки;

3) разбиваем область определения критическими точками на интервалы;

4) определяем знак производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку возрастания, знак «минус» - промежутку убывания.

Определение 10. Точками экстремума функции являются точки, в которых функция определена, и, проходя через которые, производная меняет знак.


 

Находим производную на области определения: Находим критические точки: 1) находим стационарные точки (они же нули числителя): в нашем примере x=0; 2) находим нули знаменателя: . Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим «+» над этим промежутком и переходим к следующему, если отрицательное, то ставим «-» и т.д. К примеру, , следовательно, над первым слева интервалом ставим «+». Схематично плюсами/минусами отмечены промежутки где производная положительна/отрицательна. Возрастающие/убывающие стрелочки показывают направление возрастания/убывания.   Делаем вывод: - функция возрастает на промежутке и на промежутке ; - функция убывает на промежутке и на промежутке . В нашем примере точкой экстремума является точка х=0. Значение функции в этой точке равно . Так как производная меняет знак с «+» на «-» при прохождении через точку х=0, то (0; 0) является точкой локального максимума (если бы производная меняла знак с «-» на «+», то мы имели бы точку локального минимума).  

 







Дата добавления: 2015-09-15; просмотров: 839. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия