Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Введение исходных данных





Входе прохождения практики, мною были собранны различные данные для данной модели.

Интенсивность прибытия клиентов составляет в среднем 20 человек за час. Из них 20% пользуются банкоматом, 40% обращаются за обслуживанием в кассы, 40% направляются к менеджерам по кредитованию.

Персонал отдела состоит из 3 кассиров и 3 менеджеров.

В ходе кредитования клиент проходит несколько стадий. На каждой стадии менеджер может отказать в кредите в виду того, что клиент может не соответствовать требованиям банка или из-за недостаточности данных и документов. Клиент также может сам прекратить обслуживание.

Для имитации поступления клиентов я использовал элемент Source

Для того чтобы модель работала более удобно, в объекте Source я ввел параметр attivalRate (см. рис.14).

С помощью данного параметра при запуске модели можно регулировать поток клиентов в час, это позволяет рассмотреть различные варианты результатов эксперимента. Интервал между приходом клиентов с 10 да 30 человек в час, такой разброс позволяет получить различные результаты, например в случаи увеличения числа клиентов.

Слайдер/бегунок

В данной модели после прибытия клиента в зависимости от его целей может существовать несколько вариантов событий. Клиент может воспользоваться услугами банкомата, либо при более сложных операциях обратиться к менеджеру или кассиру.

Вероятность того что клиент воспользуется банкоматом примерно равна 20%. Оставшиеся 80% операций делятся примерно поровну между менеджерами и кассирами.

Для разработки модели очереди к банкомату я использовал объекты Queue (см. рис. 16) и Delay (см. рис. 17).

Исходя из моих наблюдений в среднем время затрачиваемое клиентами на банкомат составляет от 2 до 5 мин. Для того чтоб указать это я использовал параметр случайных чисел triangular.

Модель очереди к кассе состоит из объектов Queue (см. рис. 19),Service (см. рис. 21), selectOutput(см. рис. 22) и ResourcePool (см. рис. 25).

Рисунок 19- Queue1

В данном случае объект Queue1 будет имитировать очередь к кассе.

во многих элементах модели я установил действия при входе и выходе.

с помощью них при симуляции в отдельном окне можно наблюдать статус клиента.

Рисунок 21- Service

После того как клиент дождется своей очереди к кассе его состояние в таблице изменится на - клиент начал обслуживаться (Рисунок №10). На данном этапе модели клиент выбирает тип услуги: погашение кредита, открытие счета, денежные переводы, обмен валюты. Для распределения услуг я использовал объект selectOutput (см. рис. 22)

Рисунок 22 – selectOutput9

Исходя из данных и наблюдений, полученных во время прохождения практики, в 40% случаев клиент пользуется услугами по погашению кредитов, 30% услуги по открытию счета, 17% обмен валюты, 12% денежные переводы и в 1% случаев клиент обращайся не по теме.

В дальнейшем клиент обслуживался по выбранному им сценарию (см. рис 23).

Рисунок 23 – Схема обслуживания на кассе

В модели все услуги сделаны почти одинаково и по этому рассматривать все не имеет смысла, далее будет рассмотрено только погашение кредита (см. рис 24).

Рисунок 24 – Погашение кредита

Время обслуживания клиента рассчитывается параметром triangular, а также с помощью слайдера при выборе параметров, для всех услуг стоят свои регуляторы времени.Также когда клиент проходит этот этап модели его статус меняется на клиент закончил обслуживание (см. рис. 10).

Количество персонала обслуживающие клиентов на кассе определяются объектом ResourcePool (см. рис. 25).

Рисунок 25 – ResourcePool

В объекте используется параметр resources1, он позволяет при выборе параметров изменять количество рабочего персонала на кассе.

Модель очереди к менеджеру так же состоит из объектов Queue (см. рис. 27),Service (см. рис. 28), selectOutput и ResourcePool (Рисунок см. рис.29).

Главным отличием этой модели от предыдущих в том, что прежде чем клиенту одобрят кредит,он должен пройти несколько стадий рассмотрения кредитоспособности и на каждой стадии есть вероятность отказа в кредите (см. рис. 26).

Рисунок 26 – Модель менеджера

За моделирование очереди к менеджеру отвечает объект Queue (см. рич 27).

Когда подойдет очередь клиента, он начинает проходить стадии проверки его кредитоспособности, исходя из полученных данных, на каждой стадии есть своя вероятность отказа в кредите. Анализ документов на полноту и достоверность 30%, анализ информации о заемщике 25%, Анализ финансово-хозяйственной деятельности 20%, анализ кредитуемой операции 15%, анализ кредитоспособности 10%, одобрение кредита 10%. Все стадии так же можно регулировать по времени затрачиваемого на их прохождение. Их модели построены на подобии друг друга поэтому все их рассматривать нет смысла, далее будет рассмотрена модель анализа документов полноту и достоверность Рисунок.

Рисунок 28 – Параметры Service11

Время задержки регулируется с помощью параметра triangular и слайдера при выборе параметров, действия при выходе показывают, что клиент продолжает обслуживаться (см. рис.20).

Все стадии имеют общий ресурс (персонал), количество которого можно регулировать при выборе параметров (см. рис. 29).

Рисунок 29 - Рисунок 15 – ResourcePool

Модель имеет общий выход для всех рассматриваемых вариантов, клиент может закончить обслуживаться, ему могут отказать в кредите и закончить обслуживание или же он может сам покинуть отделение, за выход отвечает объект Sink (см. рис. 30).

 

 

Рисунок 30 – Объект Sink

Для того чтобы регулировать время задержки в модели я ввел специальные параметры и переменные (см. рис. 31).

Рисунок 31 – Параметры и переменные модели

Параметр serviceTime использовался для регулировки времени задержки в модели (см. рис. 32).

Рисунок 32 –Применение параметра serviceTime

Параметры arrivalRate использовался для Регулировки интенсивности прибытия клиентов банка (см. рис. 33).

Рисунок 33 –Применение параметра arrivalRate

Параметр resources использовался для регулироки количества персонала (см. рис. 34)

Рисунок 34 –Применение параметра resources

Также мной были введены две диаграммы для сбора данных и статистики (см. рис.35)

 

Рисунок 35 – Диаграммы данных

Данные диаграммы рассчитываю среднюю величину очереди у кассы и менеджера, основываясь на данных полученных из нее можно регулировать модель до получения наилучших результатов.







Дата добавления: 2015-09-19; просмотров: 367. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия