Еще одним способом возрождения оптических телескопов является
использование лазеров для компенсации атмосферного искажения.
Звезды мерцают не потому, что они вибрируют, они мерцают главным
образом из-за очень малых температурных флуктуации в атмосфере.
Это означает, что в открытом космосе, вдали от нашей атмосферы,
астронавты видят звезды, сияющие ровным, неизменным светом.
Хотя красота ночного неба в большой степени связана с мерцанием
звезд, для астрономов это просто кошмар: из-за этого явления сним-
ки небесных тел получаются расплывчатыми. (Я помню, как в детстве
смотрел на размытые изображения Марса и мне очень хотелось ка-
ким-нибудь образом заполучить кристально четкие снимки красной
планеты. Если бы только можно было исключить возмущения атмо-
сферы путем перенаправления световых лучей, думал я, то, возможно,
разрешилась бы загадка о существовании внеземной жизни.)
Одним из способов компенсировать эту размытость является
использование лазеров и высокоскоростных компьютеров для того,
чтобы свести на нет это искажение. Б этом методе используется
«адаптивная оптика», которую впервые задействовала моя одно-
курсница по Гарварду Клер Макс из Ливерморской национальной
лаборатории имени Лоуренса, а также другие ученые, используя
телескоп имени Уильяма Майрона Кека нд Гавайях (самый большой
в мире), а также меньший трехметровый телескоп Шейна в Ликской
обсерватории в Калифорнии. Пустив, например, лазерный луч в
открытый космос, можно измерить очень малые температурные
флуктуации в атмосфере. Эта информация анализируется при помо-
щи компьютера, который затем несколько корректирует положение
зеркала телескопа, что позволяет компенсировать это искажение
звездного света. Таким путем можно в значительной мере исключить
возмущения атмосферы.
Этот метод был с успехом опробован в 1996 году, и с тех пор с его
помощью удается получать кристально четкие изображения планет,
звезд и галактик. Система пускает в небо свет из настраиваемого
лазера на красителе мощностью в 18 Вт. Лазер крепится к трехметро-
вому телескопу, деформируемые зеркала которого настраиваются
для компенсации атмосферных искажений. Само изображение улав-
ливается камерой ПЗС и оцифровывается. При весьма скромном
бюджете эта система позволяет получать изображения, четкость
которых почти не уступает изображениям с космического телескопа
Хаббла. При помощи этого метода астрономы получают снимки,
на которых можно различить мелкие детали внешних планет и даже
вглядеться в самое сердце квазара, что дает новую жизнь технологии
оптических телескопов.
Этот метод позволил увеличить разрешение телескопа Кека в де-
сять раз. Обсерватория имени Кека расположена на вершине гавай-
ского спящего вулкана Мауна-Кеа, на высоте в 4201 м над уровнем
моря, и состоит из двух телескопов-близнецов, каждый из которых
весит 270 тонн. Зеркала имеют диаметр 10 метров (394 дюйма) и
состоят из 36 шестиугольников, положение каждого из которых
можно непосредственно регулировать при помощи компьютера.
В 1999 году система адаптивной оптики была встроена в телескоп
Кека II. Система состоит из маленького деформируемого зеркала,
которое может менять форму 670 раз в секунду. При помощи этой
системы уже удалось сделать снимки звезд, вращающихся вокруг
черной дыры в центре нашей Галактики Млечный Путь, снимки
поверхности Нептуна и Титана (луны Сатурна) и даже одной экс-
трасолнечной планеты, которая затмила свою материнскую звезду
на расстоянии в 153 световых года от Земли. Свет звезды HD 209458
тускнел в точном соответствии с прогнозами по мере прохождения
планеты перед материнской звездой.