изучение связи состояния здоровья населения в связи уровнем контаминации продовольственного сырья и пищевых продуктов ЧХВ. 2 страница
Основной путь загрязнения пищи Clostridium botulinum связан с переносом клостридий от их естественных носителей (чаще всего животных и рыбы) или из среды обитания (почвы). Мясо и рыба могут загрязняться при переработке сырья (нарушения во время разделки) или грубых санитарных нарушениях в процессе перевозки и хранения, сопровождающихся почвенным загрязнением. Именно с последним связан основной механизм обсеменения спорами Clostridium botulinum растительного продовольственного сырья (овощей, зелени, грибов). Подавляющее число случаев ботулизма связано с употреблением в пищу консервированных или копченых продуктов домашнего приготовления. К ним относятся грибные, мясные, рыбные и овощные герметично укупоренные баночные консервы, а также колбасы, окорока, балыки и копченая рыба. В рыбной продукции чаще регистрируется Clostridium botulinum серотипа Е. Серотипы А и В выделяются в основном из растительной продукции и мясных изделий. Все случаи ботулизма связаны с нарушением правил консервирования и копчения указанной продукции. С одной стороны, не была проведена требуемая дотепловая обработка сырья (тщательное мытье и очистка) и не соблюдены необходимые параметры тепловой обработки для уничтожения всей вегетативной микрофлоры, с другой стороны, созданы анаэробные условия хранения продукта (герметичная упаковка) при недостаточной кислотности (рН больше 4,6). При строгом соблюдении технологического регламента и санитарных правил промышленного консервного и коптильного производства должны полностью уничтожаться вегетативные формы клостридий и в значительной степени их споры, а также создаваться кислотная среда, препятствующая токсинообразованию. Стафилококковый токсикоз. Этот токсикоз возникает при попадании в организм с пищей белкового энтеротоксина, вырабатываемого грамположительной бактерией Staphylococcus aureus. Стафилококки способны размножаться и продуцировать токсин при температуре от 7 до 45 °С в широком диапазоне рН — от 4,2 до 9,3. Staphylococcus aureus хорошо переносит стандартные режимы тепловой обработки продуктов (например, пастеризацию) и погибает лишь при температуре 80 °С в течение 10 мин или при кипячении — почти мгновенно. Он также устойчив к высоким концентрациям поваренной соли и сахара. Размножение стафилококка и процесс токсинообразования задерживается при концентрации хлорида натрия не менее 12 % и сахара не менее 60 %. Патогенностью обладают только те Staphylococcus aureus, которые способны вырабатывать энтеротоксин. Энтеротоксигенность стафилококков чаще всего сочетается с их способностью к плазмокоагуляции. Коагулазоположительные стафилококки при их фаготипировании, как правило, относятся к III и IV фагогруппам. Известно несколько серологических типов стафилококковых энтеротоксинов. Токсин, вырабатываемый Staphylococcus aureus, является чрезвычайно термостабильным и выдерживает кипячение в течение 1 ч. Этот факт определяет безусловную непригодность для целей питания любого продукта, загрязненного стафилококковым токсином. Стафилококковый токсикоз относится к острым заболеваниям с коротким инкубационным периодом, составляющим в среднем 2-4 ч после употребления пищи, содержащей токсин. Патогенез пищевого токсикоза связан с местной реакций на поступление токсина и его попаданием в кровь, обусловливающим признаки общей интоксикации. Пороговая доза токсина составляет менее 1 мкг. Это количество может накопиться в продукте при наличии в нем около 105 живых энтеротоксигенных стафилококков в 1 г. Восприимчивость людей к стафилококковому токсину чрезвычайно высокая: заболевание наступает у 60-90%, употребивших загрязненную пищу. При этом, однако, регистрируются различные выраженность и скорость возникновения симптомов острого состояния. Это зависит от многих факторов, в том числе от специфических характеристик токсина (его серотипа), количества съеденного «виновного» продукта, состояния здоровья и возраста потерпевшего. Вспышка стафилококкового токсикоза характеризуется массовым характером с быстрым нарастанием числа заболевших, очень коротким инкубационным периодом, единой инициирующей симптоматикой (тошнотой и рвотой), четкой идентификацией подозреваемого продукта или продуктов. В последнем случае имеется, как правило, единый компонент, входящий в состав всех подозреваемых изделий, произведенный на конкретном пищевом объекте. При этом сами подозреваемые продукты могут быть выработаны или реализованы в разных местах. В клинической картине превалирует тошнота и многократная рвота, а также боли в эпигастральной области и спутанное сознание. Достаточно часто наблюдаются также диарея, головная боль и мышечные спазмы. Температура тела, как правило, не повышается. Данная симптоматика обычно держится 24-48 ч, но может продолжаться и более продолжительное время (3 сут и больше). Осложнения вплоть до летального исхода регистрируются редко и присущи в основном пожилым лицам и детям раннего возраста. Для лабораторной диагностики заболевания необходимо выделить из подозреваемого продукта стафилококковый энтеротоксин, сконцентрировать его и идентифицировать с помощью антиэнтеротоксических сывороток. Выделение живой культуры Staphylococcus aureus из пищевого продукта, материала от заболевших и работников пищевого предприятия (мазок из носоглотки) дает возможность не только подтвердить диагноз пищевого токсикоза, но определить идентичность штаммов, обнаруженных у заболевших и в «виновном» пищевом продукте, а также установить источник загрязнения пищи — работника пищевого объекта — носителя энтеропатогенных штаммов. Идентичность штаммов оценивается в реакции фаготипирования или с помощью ПЦР. В настоящее время применяются экспресс-методы идентификации стафилококкового энтеротоксина в пище, основанные на использовании моноклональных антител в иммуноферментном анализе. Экспресс-методы позволяют обнаружить токсин на уровне 1 нг в 1 г продукта. Стафилококки способны размножаться, не изменяя органолептических свойств, во многих продуктах и блюдах: молоке и молочных изделиях, мясе, салатах с использованием яиц, птицы, рыбы, картофеля, макарон, кремовых кондитерских изделиях, сложных бутербродах. При этом способность к токсинообразованию проявляется у стафилококков в зависимости от температуры и продолжительности хранения продукта, его химического состава и кислотности. В этом плане наиболее благоприятной средой для продукции токсина являются молоко, молочные продукты, кремовые кондитерские изделия, картофельное пюре, молочные каши, котлеты, бутерброды с ветчиной и сыром. При хранении загрязненного Staphylococcus aureus молока в условиях комнатной температуры пороговая концентрация энтеротоксина накапливается через 6-8 ч. В кисломолочных продуктах размножение и токсинообразование стафилококков блокируются специфической микрофлорой (лакто- и бифидофлорой) и молочной кислотой. В мороженом Staphylococcus aureus также не размножается из-за низкой температуры. Редкие случаи стафилококкового токсикоза, связанные с кисломолочными продуктами, кислым творогом и мороженым, обусловлены предварительным токсинообразованием в загрязненном молочном сырье, использованном в производстве указанных продуктов. В заварном креме и кондитерских изделиях, его содержащих (тортах, пирожных), энтеротоксин способен накапливаться при комнатной температуре в течение нескольких часов. Это связано с низкой концентрацией сахара (менее 50 %) в этом виде кондитерских кремов в отличие от сливочных и масляных, где сахара содержится более 60 %. В мясном фарше стафилококковый токсин образуется медленнее: даже при температурах выше комнатной — не ранее чем через 14 ч. Однако при добавлении в фарш пшеничного хлеба (котлетная рецептура) энтеротоксин накапливается за 3-4 ч. Столько же времени необходимо для продукции токсина в молочной каше и картофельном пюре. Современные режимы тепловой обработки продуктов (гипербарическая стерилизация), производимых промышленным способом, в частности рыбных, мясных и молочных консервов, гарантируют отсутствие Staphylococcus aureus в готовом изделии. Твердые сыры могут стать фактором передачи стафилококкового токсина либо в случае нарушения технологии их производства — сокращения времени созревания до 35-40 сут, либо при вторичном загрязнении. В любом случае токсин может накапливаться в продукте только при нескольких условиях. Во-первых, продукт или сырье для его производства должны быть контаминированы энтеропатогенным штаммом Staphylococcus aureus, во-вторых, необходимо грубо нарушить условия их хранения (температурный режим и сроки) и, в-третьих, физико-химические характеристики продукта должны соответствовать оптимальным для токсинообразования. Основными природными резервуарами стафилококков являются человек и животные. Здоровое носительство в области носоглотки, на коже и в волосах регистрируется более чем у 50 % населения. Если не выявленный в ходе обязательных медицинских осмотров носитель работает на пищевом объекте и непосредственно контактирует с продовольственным сырьем и готовыми продуктами, то он, безусловно, является постоянным источником загрязнения пищи Staphylococcus aureus. Аналогичную опасность представляет допущенный к производству работник с гнойничковыми заболеваниями открытых частей тела и рук. Другим источником загрязнения стафилококками продовольствия являются животные — носители Staphylococcus aureus и больные, например маститом кокковой природы. Таким путем обсеменению подвергается мясо и молоко. Наличие в продукте даже значительного количества стафилококков не является непременным условием для развития токсикоза — определяющим фактором всегда становится количество образовавшегося энтеротоксина. Наиболее интенсивно процесс токсинообразования протекает при комнатной температуре, т. е. при неправильном хранении скоропортящейся продукции. В условиях холодильника токсин практически не образуется, как и при температуре выше 60 °С (регламентируемая температура второго блюда на раздаче). Нейтральная и щелочная среда продукта и наличие углеводов и белков в его составе также способствуют токсинообразованию. Профилактика стафилококковых токсикозов предполагает комплекс санитарно-эпидемиологических мероприятий, включающий: строгий контроль безопасности животного продовольственного сырья, поступающего в первую очередь в систему общественного питания; обязательное выявление и санацию носителей энтеропатогенных стафилококков среди работников пищевых объектов; строгое соблюдение правил производственной и личной гигиены; безусловное обеспечение установленных условий и сроков хранения скоропортящейся продукции. Пищевые микотоксикозы. Микотоксины — это органические природные соединения сложной химической структуры (кумарины, алкалоиды, пептиды), являющиеся вторичными метаболитами почвенных микроскопических грибов, паразитирующих на разных растениях. При попадании микотоксинов в организм млекопитающих, включая человека, они оказывают токсическое действие. Микотоксины влияют на обмен веществ человека на клеточном и молекулярном уровнях, проявляя в том числе и мутагенную активность. Некоторые микотоксины имеют канцерогенную направленность действия: афлатоксин, зеараленон, патулин, охратоксин и фуманизин. Эти соединения относятся к неизбежным контаминантам продовольственного сырья — их присутствие в соответствующем продовольствии полностью исключить нельзя, а можно лишь ограничить. При этом практически не существует надежных методов их удаления из пищевых продуктов в процессе технологической и кулинарной переработки. Микотоксины относятся к чрезвычайно термостабильным соединениям, выдерживающим температуру 100 °С и более. Микотоксины способны аккумулироваться в кукурузе, зерновых, соевых бобах, арахисе, орехах, масличных растениях, бобах какао, зернах кофе и другом сырье, а также в кормовых культурах. Токсинообразование может происходить как при выращивании растений, так и при последующем обороте продовольственного сырья (транспортировке и хранении) в условиях, благоприятных для развития грибов. В сопряженной эволюции злаковых культур и различных видов плесневых грибов под влиянием применяемых пестицидов наиболее быстрому прогрессивному отбору у грибов подвергаются признаки протеолитической и амилолитической активности и связанное с ними токсинообразование. К усугубляющим факторам следует также отнести общее потепление климата на планете, расширяющее ареал распространения токсигенных грибов. Заболевания животных и человека, развивающиеся в результате потребления продукции, содержащей микотоксины, называют микотоксикозами. В группу микотоксикозов у человека включаются афлатоксикозы, фузариотоксикозы, эрготизм и ряд других патологических состояний. Три генерации микроскопических грибов — Asspergillus, Penicillium и Fusarium являются наиболее частыми контаминантами кукурузы, зерновых, соевых бобов, арахиса, масличных и орехов. Афлатоксины и афлатоксикозы. Микроскопические грибы рода A. flavus и другие аспергиллы продуцируют афлатоксины типа В1, В2, G1, G2 в крахмальных зерновых культурах (кукурузе, пшенице, сорго, овсе, ячмене, просе и рисе), в соевых бобах, орехах, специях, арахисе и масличных культурах. Наличие грибов в растениях не всегда напрямую связано с высокой концентрацией токсинов — для токсинообразования должны быть созданы благоприятные условия. Влажность зерновых культур, составляющая 18 % (при водной активности 0,85), соевых бобов — 15 и арахиса — 8-9 %, является оптимальной для формирования токсина. Температурный оптимум продукции токсина составляет 24-35 °С. В условиях температурного оптимума продукция токсина продолжается 24 ч и биологически значимая его концентрация образуется в течение нескольких дней. При влажности продукта более 30 % образование токсина прекращается, как и при температуре ниже 12 и выше 42 °С. Поступая в организм сельскохозяйственных животных с загрязненными кормами, афлатоксины типа В трансформируются в аналогичные соединения типа М, которые накапливаются во внутренней среде и выделяются с молоком. Количество выделяемого с молоком афлатоксина М1 составляет в среднем 1-2 % суммы поступивших с кормами афлатоксинов типа В. Афлатоксины в организме человека подвергаются внутриклеточному гидроксилированию монооксигеназной системой с образованием вторичных метаболитов (включая афлатоксин М1 и эпоксидные соединения). При недостаточности клеточной защиты, к которой относится конъюгация с восстановленным глутатионом и взаимодействие с витаминами-антиоксидантами (ретинолом, аскорбиновой кислотой и токоферолом), не связанные вторичные электрофильные продукты способны повреждать белковые и нуклеиновые соединения, вызывая сенсибилизацию организма, нарушая функции мембран, повреждая наследственную информацию и инициируя канцерогенез. Наибольшей токсичностью обладает афлатоксин В1. Афлатоксикоз относится к пищевым отравлениям и может проявляться в двух формах: острой интоксикации и хроническом субклиническом отравлении. Острая интоксикация возникает при поступлении больших доз афлатоксина и проявляется в виде геморрагического некроза печени, отека, летаргии. Летальный исход, составляющий около 25 % всех случаев, наступает от прямого поражения печени. При хроническом субклиническом отравлении воздействие осуществляется на алиментарный и иммунологический статус. При этом все поступающие дозы афлатоксинов кумулируются, усиливая риск развития рака печени. Увеличение риска развития гепатомы связано с разблокированием гена-супрессора Р53 и активацией доминантных онкогенов. В силу этого афлатоксины отнесены к 1-му классу канцерогенов и имеют очень жесткие нормативы остаточных количеств в продовольствии: 5 мкг/кг в растительных продуктах и 0,5 мкг/кг в молоке (норматив Российской Федерации). Выявление афлатоксинов в пище и кормах производится с помощью иммуноферментного анализа и хроматографических методов. Опасность развития рака печени также увеличивается в 25-30 раз при сочетании экспозиции афлатоксинами и персистенцией в организме вирусов гепатита В и С за счет подавления афлатоксинами механизмов репарации ДНК, поврежденной вирусами гепатита. В 2000 г. на долю рака печени пришлось около 9 % всех смертей от новообразований в мире, что составило около 500 тыс. случаев. Развитие вторичного иммунодефицита в условиях хронической субклинической нагрузки афлатоксинами связано с аплазией тимуса, уменьшением количества и функциональной активности лимфоцитов, подавлением фагоцитарной активности и снижением активности комплимента. Нагрузка афлатоксинами снижает также иммунный ответ на вакцинацию. Основным результатом влияния афлатоксинов на пищевой статус является снижение массы тела у взрослых и замедление роста у детей. Это связано с блокировкой синтеза белка за счет ковалентной связи афлатоксина с ДНК. Антиалиментарное действие афлатоксина особенно проявляется в условиях белковой недостаточности. Для оценки степени хронической нагрузки афлатоксинами в крови определяется афлатоксин-альбуминовый комплекс, циркулирующий 30-60 дней после поступления токсинов в организм. Учитывая множественные пути биотрансформации и кинетики афлатоксинов, в качестве биомаркера используется также концентрация его вторичных метаболитов (включая афлатоксин М1) в моче. Наибольшее распространение афлатоксикозов регистрируется в странах, расположенных между 40 ° северной и южной широты. Около 4,5 млрд людей, проживающих в развивающихся странах в этом географическом регионе, испытывают хроническую нагрузку афлатоксинами, которая зачастую количественно не контролируется. Однако, учитывая интенсивный поток продовольствия в рамках мирового торгового пространства, опасность перераспределения нагрузки афлатоксинами с вовлечением других стран становится с каждым годом все более актуальной. Профилактика афлатоксикозов связана с комплексом мероприятий, направленных на снижение концентраций афлатоксинов в пищевой продукции и кормах для сельскохозяйственных животных. Размножению аспергилл в растениях и накоплению афлатоксина способствуют ряд факторов, в том числе тип почвы, активность насекомых вредителей, стадия развития растения. Делаются попытки распространения в качестве биологического средства защиты неафлатоксигенных видов грибков, вытесняющих токсигенные. Показано также, что использование генетически модифицированных растений с устойчивостью к насекомым обеспечивает снижение накопления афлатоксинов в культурных растениях, таких как кукуруза. Этот факт объясняется, по-видимому, уменьшением общего числа повреждений растения насекомыми и ухудшением за счет этого условий размножения грибов. С генетической модификацией также связывают возможность получения растений, непосредственно устойчивых к контаминации грибами или обладающих способностью инактивировать токсин. Используемые для борьбы с сорняками и грибами пестициды способствовали значительному полиморфизму плесеней, в ряде случаев расширив их адаптивные возможности и повысив токсигенный потенциал. При хранении потенциально опасного продовольственного сырья необходимо соблюдать такие условия, при которых не происходит рост грибов и не интенсифицируется токсинообразование: влажность не должна превышать 10%, а температура 10 °С. При этом должны проводиться регулярные дезинсекционные и дератизационные мероприятия, поскольку наличие насекомых и грызунов способствует повышению влажности продукции. Целесообразно также использовать инертную атмосферу в хранилищах. Промышленная переработка загрязненного грибами и токсинами сырья способна уменьшить опасность продукта в результате разбавления, деконтаминации и сепарации. Прием разбавления заключается в перемешивании продукции, содержащей высокие концентрации афлатоксина, с более чистыми партиями, с обязательным контролем средней пробы после получения смеси. Деконтаминационные приемы связаны с возможностью денатурации афлатоксинов в продукции при обработке ее щелочами, аммонийными солями или озоном. При этом, однако, существует опасность реформирования афлатоксинов в кислой среде желудка. Метод сепарации основан на удалении загрязненных зерен, бобов или орехов из общей массы продукта. Установлено, что распределение афлатоксина, например, в арахисе, связано с накоплением его основного количества (80 %) в наименьших по размеру и сморщенных семенах. Профилактические мероприятия по предупреждению поступления афлатоксинов в организм сельскохозяйственных животных, которые трансформируются и накапливаются в животном продовольственном сырье, должны быть направлены в первую очередь на контроль безопасности кормов и строгого выполнения регламентации их получения и оборота. Предлагается также использовать специальные добавки к корму, с одной стороны, усиливающие детоксикацию образовавшихся афлатоксинов, а с другой, — способствующие их энтеросорбции в ЖКТ животных. Подтверждено детоксикационное действие глюкаманозных эфиров, а также других дрожжевых экстрактов и сорбционная эффективность активированного древесного угля и Na-Ca-алюмосиликатов (глин). К мерам алиментарной профилактики афлатоксикозов относится обеспечение полноценного питания, в первую очередь достаточное поступление белка, витаминов А, Е, С, b-каротина, биофлавоноидов, кальция и пищевых волокон. Именно эти нутриенты снижают степень инкорпорации токсинов из ЖКТ во внутреннюю среду и обеспечивают работу II фазы трансформации ксенобиотиков, в рамках которой детоксицируются продукты метаболической активации афлатоксинов и осуществляется защита специфических белков, липидов и нуклеиновых кислот. Установлено также, что хлорофилл, поступающий в составе овощей и зелени, способствует снижению степени токсического эффекта афлатоксинов. Фузариотоксины и фузариотоксикозы. Почвенные микроскопические грибы рода Fusarium (Gibberella) способны продуцировать целый ряд микотоксинов класса трихотиценов. К типу А трихотиценов относятся Т-2 токсин и НТ-2 токсин, а к типу В — дезоксиниваленол (ДОН), 3-ацетил ДОН, 15-ацетил ДОН, ниваленол, фузаренон X, зеараленон и фумонизины (В1, В2, В3). Тип доминантно продуцируемого микотоксина зависит не только от вида гриба, но и от внешних условий, главным образом от влажности продукта и температуры воздуха. Несколько различных микотоксинов могут продуцировать один и тот же гриб, в то же время аналогичные типы трихотиценов способны накапливать разные виды грибов. Например, F. moniliforme может синтезировать как зеараленон, так и фумонизины, a F. graminiarum отличается способностью к образованию токсинов практически любого типа (ДОН, зеараленон, Т-2). Трихотицены накапливаются в разнообразных зерновых (пшенице, ячмене, овсе, рисе, кукурузе), произрастающих в жарких регионах всех континентов. Интенсивность их продукции зависит от климатических условий, применяемых сельскохозяйственных технологий и условий хранения зерновой продукции. Оптимальный рост и способность к продукции токсина наблюдаются при температуре выше 15 °С и влажности продукта от 17 до 30 %. При этом имеются индивидуальные оптимумы у всех видов Fusarium. Например, Fusarium sporotrichoides способны вырабатывать токсин Т-2, начиная с температуры 7 °С. Трихотиценовые токсины не разрушаются при высоких температурах, выдерживая нагревание до 120-180 ºС, устойчивы к действию кислот, но инактивируются в щелочной среде. Так, при кулинарной обработке кукурузы с использованием щелочных компонентов (что является особенностью в некоторых регионах) количество токсина снижается на 72-88%. Различные способы технологической и кулинарной обработки зернового сырья и продуктов по-разному влияют на содержание фузариотоксинов в готовом блюде (изделии). При переработке кукурузы методом влажного помола содержащиеся в сырье фузариотоксины, относящиеся к водорастворимым соединениям, переходят в основном в жидкую фракцию с минимальными остаточными количествами в крахмале и фруктоолигосахаридах. При сухом помоле кукурузы и других зерновых наибольшие уровни токсина определяются в зародышевой части и отрубях, а наименьшие — в муке и крупах. Так, в пшеничной муке содержание трихотиценов не превышает 50 % их количества в зерне. При варке макаронных изделий в воду выходят до 80 % трихотиценов. Использование экструзионных технологий не ведет к снижению остаточных количеств микотоксинов, что связано с их устойчивостью к высоким температурам и гипербарии. Не снижается уровень трихотиценов при выпечке хлеба и в процессе пивного производства. В организме животных при содержании их на кормах, загрязненных фузариотоксинами, накопление токсических метаболитов не происходит в отличие от афлатоксинов. При поступлении в организм трихотицены оказывают разнообразное отрицательное воздействие на здоровье как человека, так и сельскохозяйственных животных. Они вызывают расстройства питания (анорексию, снижение массы тела), некрозы в ЖКТ, костном мозге и лимфоидной ткани и оказывают нейротоксическое, гематотоксическое, кардиотоксическое, тератогенное и иммуномодулирующее действие, снижают устойчивость к инфекциям и стрессу. Патогенез действия фузариотоксинов на клеточном уровне связан с нарушением синтеза белка (за счет трансляционного блока и ингибирования элонгации пептидной цепи) и индукцией апоптоза. Относительно низкие дозы трихотиценов вызывают стимуляцию иммунной системы: повышение уровня IgA, цитокининов, интерлейкина-6. В наблюдениях на животных показано, что поступление в организм с пищей ДОН и ниваленола сопровождается повышенным образованием иммунных комплексов с IgA, которые накапливаются в почках и вызывают патологию, сходную с гломерулонефритом у человека. Напротив, высокие дозы фузариотоксинов подавляют иммунную активность, действуя непосредственно на уровне костного мозга, лимфатических узлов, селезенки, тимуса и интерстинальной лимфатической системы. Например, ДОН, проникая в лейкоциты, последовательно индуцирует фосфорилирование митогенактивирующих протеинкиназ, активирует транскрипционный фактор и экспрессирует циклооксигеназу-2, ускоряя тем самым апоптоз. В результате иммуносупрессия проявляется в снижении числа лейкоцитов, а также сывороточных IgM и IgG. Острое токсическое действие фузариотоксинов характеризуется радиомиметическими эффектами, такими как диарея, рвота, геморрагии, коллапс, лейкоцитоз. При длительной хронической нагрузке небольшими дозами трихотиценов (ДОН, ниваленол) развивается анорексия, атаксия, нейроэндокринные нарушения и иммунодефицит, наблюдаются явления истощения. Количество ДОН регламентируется в продовольственном зерне, изолятах растительных белков, крупе и муке на уровне 0,7-1 мг/кг (норматив Российской Федерации). Описанным случаем острого фузариотоксикоза является алиментарно-токсическая алейкия. Данное заболевание связано с употреблением в пищу хлеба, произведенного из перезимовавшего на поле зерна. В процессе длительного пребывания в поле зерно подвергается массивному заражению грибами Fusarium sporotrichoides, которые вырабатывают токсины Т-2 и НТ-2 и обладают выраженным (в большей степени, чем у ДОН и других трихотиценов) гематотоксическим (миелотоксическим) эффектом. Гематотоксический эффект фузариотоксинов характеризуется тромбоцитопенией, лейкопенией, нарушением свертываемости крови и снижением устойчивости к инфекциям. Основными клиническими проявлениями алиментарно-токсической алейкии являются: септическая ангина (воспалительное поражение миндалин, мягкого нёба, задней стенки глотки), геморрагическая сыпь и подкожные кровоизлияния на туловище и конечностях, мелкие серозно-кровянистые высыпания на слизистой оболочке рта и языка, высокая лихорадка. Возможны также носовые, кишечные и маточные кровотечения. Летальность может достигать 60 % и более. Количество токсина Т-2 регламентируется в продовольственном зерне на уровне 1 мг/кг, а в крупе и муке на уровне 0,1 мг/кг (норматив Российской Федерации). При попадании в организм значимых количеств зеараленона возникает так называемый эстрогенный синдром, характеризующийся увеличением концентрации эстрогенов в крови, что приводит к целому ряду симптомов в рамках гиперэстрогенизма, в частности набуханию молочных желез или гинекомастии. Количество зеараленона регламентируется в продовольственном зерне и изолятах растительных белков на уровне 0,1-1,0 мг/кг, а в крупе и муке на уровне 0,2 мг/кг (норматив Российской Федерации). Высокой нейротоксичностью и канцерогенной активностью отличаются фумонизины. Этот тип трихотиценов накапливается главным образом в кукурузе и его продуцируют F. moniliforme. При поступлении фумонизинов в организм кроме общих для трихотиценовой нагрузки последствий может развиться лейкоэнцефаломаляция, а в качестве отдаленного последствия — рак различных локализаций, в частности пищевода. Рекомендуемые безопасные уровни суммы фумонизинов в продовольствии составляют 2-4 мг/кг (норматив США, Европейского Союза). Общие принципы профилактических мероприятий по снижению нагрузки фузариотоксинами практически аналогичны таковым для афлатоксикозов. Комплекс превентивных мер следует проводить, выделяя критические контрольные точки. 1. Селекция (в том числе с использованием генно-инженерных приемов) сельскохозяйственных культур с выбором устойчивых к Fusarium растений. 2. Применение оптимальной агротехнологии: недопущение ротации кукурузы с другими зерновыми, использование селективных фунгицидов и биологических средств защиты растений, мелиорирование. 3. Строгое соблюдение установленного регламента уборки урожая (календарные сроки, климатические условия, технология неконтаминирующей уборки).
|