Машины для контактной сварки
Технологические свойства машин контактной сварки отражают ряд показателей: − диапазон получаемых сварочных токов, усилий сжатия, скорости вращения роликов и другие показатели, а также учёт циклограмм изменения этих показателей во времени; − размеры рабочего пространства машины (вылет, сечение консолей), связаны с размерами и конфигурацией узлов, которые можно изготавливать на этой машине; − стабильность заданной циклограммы сварки. Необходимо также учитывать и другие показатели: производительность, электрическую эффективность, размеры и массу машины, наличие контрольно-информационной аппаратуры и др. Машины контактной сварки классифицируют по разным признакам: виду сварки (точечная, рельефная, шовная, стыковая); назначению (универсальные или общего назначению и специальные); видом установки (стационарные, передвижные, подвесные); родом питания, преобразования или аккумулирования энергии (однофазные переменного тока, трехфазные низкочастотные, с выпрямлением тока во вторичном контуре, конденсаторные); видом привода в механизмах давления (с ручным, грузовым, пружинным, электромагнитным, иногда с другими типами приводов); уровнем автоматизации. Классификацию можно продлить и внутри каждого типа машин для разных видов сварки. Для точечной сварки применяют разные типы машин: переменного тока, низкочастотные, постоянного тока, конденсаторные. Машины переменного тока наиболее приспособлены для сварки сталей и титановых сплавов, они проще и дешевле чем другие машины. В связи с большими скоростями нарастания тока сварка высокопрочных и жаростойких сплавов (особенно, толщиной меньше 0,8 мм) на таких машинах сопровождается разбрызгиванием и нестабильными размерами точек. Сварка легких сплавов очень энергоемка и характеризуется интенсивным загрязнением поверхностей деталей и электродов в связи с переходом металла электродов на поверхность изделия, и наоборот Машины переменного тока имеют также больше потерю мощности на индуктивном сопротивлении вторичного контура сварочного трансформатора. При коротком замыкании электродов где U2 – напряжение холостого хода на электродах; Zm – полное сопротивление машины при коротком замыкании; Rm – активное сопротивление машины, в том числе всех элементов вторичного контура; Xm – индуктивное сопротивление машины, в т. ч. вторичного контура. При сварке деталей где Rее – сопротивление в зоне сварки на участке электрод – электрод. Коэффициент мощности машины определяют отношением Составная часть Xm – индуктивное сопротивление вторичного контура где f - промышленная частота переменного тока; Lk – индуктивность вторичного контура, которая зависит от площади вторичного контура Fk=wk*hk где hk – высота контура (раствор консолей машины); wk - длина контура (вылет электродов – расстояние от корпуса машины до оси электродов). С увеличением Fk увеличивается Lk. Для уменьшения потерь мощности на Xk в машинах переменного тока вылет электродов не превышает 1200 мм, что не позволяет сваривать крупногабаритные конструкции. В низкочастотных машинах частота импульсов сварочного тока уменьшена до 5 Гц, что дает возможность увеличить вылет электродов wk до 2000 мм. Низкочастотные машины имеют высокую мощность, длинные консоли ( wk = 1500...2000 м), ступенчатую смену сварочного и ковочного усилий сжатия электродов, большой набор режимов сварки. Такие машины предназначены, главным образом, для сварки алюминиевых и магниевых сплавов. Машины постоянного тока имеют меньшую массу, чем низкочастотные и конденсаторные, но при сварке одним импульсом тока они требуют относительно большой мощности вследствие потерь в силовом выпрямителе, а также больших расходов охлаждающей воды. Преимущества машин постоянного тока: равномерная загрузка фаз; в сравнении с однофазными машинами значительно меньше потребляемая мощность, особенно при длинных консолях сварочной машины; отсутствие влияния внесенных в сварочный контур ферромагнитных масс на величину сварочного тока. В конденсаторных машинах используют батарею конденсаторов для накопления необходимой энергии и образования мощного кратковременного импульса сварочного тока. Конденсаторные машины не перегружают электрическую сеть, имеют стабильную величину сварочного тока (не влияет колебания напряжения сети). Из всех рассмотренных типов машин для точечной сварки конденсаторные машины самые дорогие. Конденсаторные машины широко используются в самолетостроении преимущественно для сварки алюминиевых и магниевых сплавов. Они наименее энергоемкие. Например, для сварки деталей из алюминиевых сплавов толщиной 2.5+2.5 мм (сварочный ток до 80 кА) конденсаторная машина потребляет из электрической сети 75 кВт, низкочастотная машина - 400 кВт, машина переменного тока - 1500 кВт. Для шовной сварки наибольшее распространение получили однофазные машины переменного тока (МШ) и с выпрямлением тока во вторичном контуре (МШВ). Привод вращения роликов может совершаться на один приводной ролик или в особенно ответственных случаях – на два. Электродвигатели привода - постоянного или переменного тока. Регулирование угловой скорости, при использовании электродвигателей, может совершаться механическими бесступенчатыми вариаторами скоростей, магнитными и скользящими муфтами. Прерывистое вращение роликов совершается механическими системами с использованием «мальтийского креста», пневматическими приводами с храповым или зубчатым зацеплением или с шаговым приводом с электромагнитной муфтой. Машины для стыковой сварки (однофазные) отличаются мощностью, конструктивным выполнением отдельных узлов, габаритными размерами и массой. С целью улучшения свойств металла сварочных соединений в машинах предусмотрена возможность совершения термической обработки стыков в губках машины. Универсальные машины можно разделить на три группы: автоматические малой мощности для сварки сопротивлением; не автоматические средней мощности с весовым механизмом подачи для сварки оплавлением и сопротивлением; автоматические для сварки оплавлением. Третья группа объединяет большой ряд машин средней и большой мощности, которые отличаются способом нагрева деталей: для сварки непрерывным оплавлением, для сварки оплавлением с подогревом, для сварки импульсным оплавлением.
|