Общая схема образования соединения
Весь процесс образования соединения условно состоит из отдельных физических процессов, которые в зависимости от роли в формировании соединения разделяют на основные и сопутствующие (рис. 3). Рисунок 3 – Основные и сопутствующие процессы При точечной сварке (рис. 4) детали 1 собирают внахлест или с отбортовкой, плотно зажимают между электродами 2 сварочной машины, нагревают кратковременным (0,01...0,5 с) импульсом электрического тока большой силы (до десятка кило-ампер) при незначительном напряжении (3...12 В), вследствие чего создается соединение на отдельных участках контакта, которые называются точками. Создание соединения происходит по схеме, что состоит из этапов I-III (рис. 4). Первый этап начинается с момента сжатия деталей силой Fсв, что вызывает пластическую деформацию микрорельефа в контактах электрод – деталь и деталь – деталь. Рисунок 4 - Этапы образования соединения при точечной сварке Следующее включение тока I и нагрев металла облегчают процессы выравнивания микрорельефа, разрушение поверхностей пленок и формирование электрического контакта. Тепловое расширение при точечной сварке происходит в условиях сжатия и сопровождается возникновением неравномерного распределения внутренних напряжений, которые вместе с постоянно действующими внешними силами Fсв вызывают необратимые объемные пластические деформации (направление максимальной деформации 3). Тепловое расширение металла в области контакта деталь – деталь является причиной образования зазора между деталями. До расплавления металла уменьшение σ д и излишек металла за счет дилатометрического эффекта компенсируются незначительным разведением электродов, а также вытеснением частей металла в зазор, что обеспечивает на внутреннем контакте рельеф – уплотнительный поясок 4, который ограничивает растекания сварочного тока. На первом этапе сопутствующие процессы из-за относительно малой деформации и низкой температуры зоны сварки не получают большого развития. Второй этап характеризуется расплавлением металла и образованием ядра 5. По мере прохождения тока ядро растет до максимальных размеров - по высоте hя и диаметру dя (размеры ядра или шва регламентируются ГОСТ 15878-79, ГОСТ 14098-85 и определяются из условий обеспечения требуемого уровня прочности свариваемых конструкций). При этом происходит перемешивание металла 6, удаление поверхностных пленок и образование металлических связей в жидкой фазе. Ядро возникает в зоне, где достигается наибольшая плотность тока и в меньшей мере влияет теплообмен с электродами. При расплавлении в замкнутом объеме резко увеличивается объем металла ядра (рис. 5), возникают электромагнитные силы и, как следствие, возникает гидростатическое давление, которое определяется общим балансом напряжений в зоне сварки. Дилатометрический эффект и общее уменьшение σд компенсируется дальнейшим раздвижением электродов и вытеснением в зазор деформированного металла. Это способствует созданию не только рельефа, который ограничивает растекание тока, но и герметизацию литого ядра, предотвращая разбрызгивание металла и его контакт с атмосферой. Внутренняя граница металла пояска имеет температуру, близкую к температуре плавления, и низкое значение σд; соответственно, температура внешней границы ниже, а σд больше. Метал пояска находится в объемно-напряженном состоянии, при этом напряжения стремятся увеличить зазор между деталями. Такой характер деформации приконтактной области деталей вызывает «оседание» металла и возникновение вмятин 8 (размер с) на поверхности от электродов. С появлением расплавленного ядра появляется опасность разбрызгивания, вследствие теплопроводности нагревается шовная зона, изменяется выходная структура металла, наблюдается массоперенос в контакте электрод – деталь (сопутствующие процессы). Третий этап начинается после выключения сварочного тока -происходит интенсивная кристаллизация ядра (hя, dя), которая оканчивает создание неразъемного соединения деталей в месте соприкосновения. Металл точек имеет дендритную структуру. Во время кристаллизации продолжается теплопередача в околошовную зону и изменение структуры металла в ней, происходит усадка металла, вследствие чего в нем создаются усадочные полости и раковины; в ядре возникают растягивающие напряжения, которые являются причиной возникновения трещин и под влиянием которых возможно разрушение непрочной точки. Для снижения уровня остаточных напряжений и предотвращения усадочных трещин и раковин нужны значительные усилия Fков. Высокое качество сварки и максимальная продуктивность процесса для данной толщины, формы и материала изделий определяются правильностью избранного режима сварки (типовой электротермодеформационный цикл сварки, смотри. рис. 4). Качество соединений также зависит от техники сварки, формы электродов, качества сборки и подготовки поверхности, сварочного оборудования, системы контроля и других конструктивно-технологических факторов.
|