Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Базис и размерность ЛП решений ОСЛАУ





В этом пункте укажем базисы и размерности наиболее часто встречающихся линейных пространств, введенных в пункте 2. Для каждого конечномерного линейного пространства обычно определяют так называемый элементарный (стандартный) базис (наиболее простой и удобный при решении задач). Также дадим критерии проверки того, при каком условии заданная система векторов является базисом линейного пространства.

1) Линейное пространство . Элементарным базисом в является упорядоченная система -мерных вектор-столбцов

, ,

где все компоненты вектор-столбца () равны нулю, кроме одной, которая равна единице и располагается в позиции, указываемой номером в его обозначении. Таким образом, .

Нетрудно доказать, что упорядоченная система -мерных вектор-столбцов

, (1.11)

где (), является базисом пространства тогда и только тогда, когда квадратная -матрица

,

столбцами которой являются векторы (), является неособенной матрицей.

При этом если задан вектор-столбец , то для нахождения координатного вектор-столбца в базисе (1.11) достаточно решить систему линейных алгебраических уравнений

,

которая в силу неособенности матрицы , имеет единственное решение.

2) Линейное пространство . Элементарным базисом в является упорядоченная система матриц

,

где все элементы матрицы () равны нулю, кроме одного, который равен единице и располагается в позиции, указываемой двумя номерами в обозначении. Таким образом, .

Нетрудно доказать, что упорядоченная система матриц

, (1.12)

где (), является базисом в тогда и только тогда, когда матрица

,

столбцами которой являются вектор-столбцы

(),

является неособенной квадратной матрицей.

При этом если задана матрица (), то для нахождения координатного вектор-столбца этой матрицы в базисе (1.12) достаточно решить систему линейных алгебраических уравнений

,

где , которая в силу неособенности матрицы , имеет единственное решение.

3) Линейное пространство

.

Известно (см. п. 2), что если , то система уравнений

имеет ровно линейно независимых решений, образующих фундаментальную систему решений (ФСР):

, (1.13)

где .

При этом любое решение можно выразить в виде

,

где коэффициенты определяются однозначно. При этом координатный вектор-столбец вектора имеет вид . Таким образом, система (1.13) является базисом в пространстве и .

Пример 1.2. Найти базис и размерность пространства решений системы

Решение. Приводим матрицу системы к ступенчатому виду

.

Ранг матрицы . Принимая переменные за базисные, а за свободные (обозначаем при этом ), получим общее решение рассматриваемой ОСЛАУ

Составляем базис пространства решений (фундаментальную систему решений, при этом ):

.

 








Дата добавления: 2015-08-12; просмотров: 774. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия