Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Базис и размерность ЛП решений ОСЛАУ





В этом пункте укажем базисы и размерности наиболее часто встречающихся линейных пространств, введенных в пункте 2. Для каждого конечномерного линейного пространства обычно определяют так называемый элементарный (стандартный) базис (наиболее простой и удобный при решении задач). Также дадим критерии проверки того, при каком условии заданная система векторов является базисом линейного пространства.

1) Линейное пространство . Элементарным базисом в является упорядоченная система -мерных вектор-столбцов

, ,

где все компоненты вектор-столбца () равны нулю, кроме одной, которая равна единице и располагается в позиции, указываемой номером в его обозначении. Таким образом, .

Нетрудно доказать, что упорядоченная система -мерных вектор-столбцов

, (1.11)

где (), является базисом пространства тогда и только тогда, когда квадратная -матрица

,

столбцами которой являются векторы (), является неособенной матрицей.

При этом если задан вектор-столбец , то для нахождения координатного вектор-столбца в базисе (1.11) достаточно решить систему линейных алгебраических уравнений

,

которая в силу неособенности матрицы , имеет единственное решение.

2) Линейное пространство . Элементарным базисом в является упорядоченная система матриц

,

где все элементы матрицы () равны нулю, кроме одного, который равен единице и располагается в позиции, указываемой двумя номерами в обозначении. Таким образом, .

Нетрудно доказать, что упорядоченная система матриц

, (1.12)

где (), является базисом в тогда и только тогда, когда матрица

,

столбцами которой являются вектор-столбцы

(),

является неособенной квадратной матрицей.

При этом если задана матрица (), то для нахождения координатного вектор-столбца этой матрицы в базисе (1.12) достаточно решить систему линейных алгебраических уравнений

,

где , которая в силу неособенности матрицы , имеет единственное решение.

3) Линейное пространство

.

Известно (см. п. 2), что если , то система уравнений

имеет ровно линейно независимых решений, образующих фундаментальную систему решений (ФСР):

, (1.13)

где .

При этом любое решение можно выразить в виде

,

где коэффициенты определяются однозначно. При этом координатный вектор-столбец вектора имеет вид . Таким образом, система (1.13) является базисом в пространстве и .

Пример 1.2. Найти базис и размерность пространства решений системы

Решение. Приводим матрицу системы к ступенчатому виду

.

Ранг матрицы . Принимая переменные за базисные, а за свободные (обозначаем при этом ), получим общее решение рассматриваемой ОСЛАУ

Составляем базис пространства решений (фундаментальную систему решений, при этом ):

.

 








Дата добавления: 2015-08-12; просмотров: 774. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия