Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие линейного пространства





ЛЕКЦИИ ПО ДИСЦИПЛИНЕ

«ЛИНЕЙНАЯ АЛГЕБРА»

 

Направление 080100

«Экономика»

 

Очная форма обучения

 

Рязань 2012


Тема 7. Линейные (векторные) пространства

1. Линейные пространства: определение (аксиомы).

Примеры линейных пространств.

Линейная зависимость, независимость системы векторов в ЛП.

Основные теоремы (свойства).

Базис и размерность ЛП, разложение вектора по векторам базиса.

Примеры базисов. Базис и размерность ЛП решений ОСЛАУ.

Переход от базиса к базису, свойства матрицы перехода.

Понятие линейного пространства

Центральное место среди всех понятий линейной алгебры занимает понятие линейного пространства.

Определение 1.1. Непустое множество элементов (векторов) , …,над которыми определены операции сложения двух векторов (при всех : ) и умножения вектора на число (при всех , : ) так, что выполняются условия (аксиомы):

: при всех ;

: при всех ;

: существует вектор такой, что для каждого ;

: для каждого существует вектор такой, что ;

: для каждого ;

: для каждого , при всех ;

: для каждого , при всех ;

: при всех , для каждого ,

называется линейным пространством.

Согласно определению линейного пространства сумма определена для любых элементов из и всегда является элементом множества . При этом говорят, что множество замкнуто относительно операции сложения. Аналогично, согласно тому же определению, множество замкнуто относительно операции умножения его элементов на действительные числа.

Прокомментируем аксиомы линейного пространства. Условия , называются соответственно аксиомами коммутативности и ассоциативности относительно сложения векторов. Условие есть аксиома существования нулевого вектора в пространстве. Условие есть аксиома существования противоположного вектора для каждого вектора пространства. Условие означает, что число 1 есть нейтральный элемент относительно умножения его на вектор пространства. Условие означает ассоциативность умножения на число. Условия и означают, что умножение на число и сложение связаны законом дистрибутивности по числам и векторам соответственно.

В определении линейного пространства важно не только то, из каких элементов состоит базовое множество , но и как введены операции над элементами этого множества. Одно и то же множество при одних операциях может быть линейным пространством, а при других – нет.

Сформулируем простейшие свойства линейного пространства, непосредственно следующие из аксиом линейного пространства.

1) Линейное пространство имеет только один нулевой вектор .

2) Каждый вектор линейного пространства имеет только один единственный противоположный. Противоположным к нулевому вектору является сам нулевой вектор.

3) Если есть противоположный к элементу линейного пространства, то вектор является противоположным к вектору , то есть

.

4) Произведение произвольного элемента линейного пространства на число 0 равно нулевому вектору:

5) Вектор , противоположный данному вектору , равен произведению вектора на число :

.







Дата добавления: 2015-08-12; просмотров: 801. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия